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Abstract— Identifying the gene regulatory networks that con-
trol development or disease is one of the most important prob-
lems in biology. Here, we introduce a computational approach,
called PIPER (ProgressIve network PERturbation), to identify
the perturbed genes that drive differences in the gene regulatory
network across different points in a biological progression.
PIPER employs algorithms tailor-made for single cell RNA
sequencing (scRNA-seq) data to jointly identify gene networks
for multiple progressive conditions. It then performs differential
network analysis along the identified gene networks to identify
master regulators. We demonstrate that PIPER outperforms
state-of-the-art alternative methods on simulated data and is
able to predict known key regulators of differentiation on real
scRNA-Seq datasets.

I. INTRODUCTION

Recent advances in the field of single cell RNA sequencing
(scRNA-seq) have enabled us to ask novel biological ques-
tions, which creates needs to develop new statistical methods
to address them [1]–[3]. Unlike bulk RNA-seq or microarray
measurements, scRNA-seq captures cell-to-cell variability in
gene expression programs. This inter-cellular variation holds
the key to inferring how genes transcriptionally regulate
each other (i.e., gene regulatory network) and how their ex-
pressions and interactions change across cell states. Several
studies have recently taken advantage of this data to examine
biological processes such as differentiation [4]–[6] in a
range of cell types and organisms. In this paper, we present
the PIPER approach that aims to infer progressive network
changes across different cellular states (e.g., differentiation)
and the regulator genes whose connection with other genes
are significantly different between the network estimates. The
regulator genes are interpreted as genes likely to have driven
the network differences (Figure 1).

PIPER has three unique advantages over existing ap-
proaches: First, although the aforementioned studies have
been able to identify gene expression changes during differ-
entiation, existing methods are not designed to identify key
regulators of these processes and provide mechanistic expla-
nations. Second, PIPER extends existing differential network
analysis methods that have been successful at identifying key
regulators of disease by detecting changes in gene network
structures between different conditions [7]. Unfortunately,
existing methods are intended to do pairwise comparisons
between two independent conditions instead of capturing
structured changes in multi-step or branched progressions.

This limitation had not been an issue for bulk RNA-seq
or microarray data, where high-volume and high-granularity
data from multiple different conditions were rarely available.
We need to extend differential network analysis methods to
handle multiple structured conditions to leverage these data.
Finally, PIPER uses the underlying distribution of scRNA-
seq data that is more suited to count-valued sequencing data
rather than normalized microarray data or bulk RNA-seq
data.

PIPER extends previous works on network inference
and differential network analysis method in the following
ways. (1) Network inference: The earliest approaches for
identifying gene networks computed correlations or mutual
information between genes and preserved interactions only
above a threshold value [8]. While simple, such methods
often lead to the identification of spurious interactions caused
by indirect interactions. This drawback is overcome in partial
correlation networks [9]. A complimentary approach uses
Gaussian graphical models (GGM) [10] to estimate the
conditional dependencies between genes, assuming that the
data follow a Gaussian distribution. Modifications of these
methods make use of prior knowledge about the graph degree
distribution [11], block structure [12] and pathway informa-
tion [13] in order to further improve network inference. In
practice, better performance has been achieved when data
from multiple conditions are used to jointly estimate the
networks at each individual condition [14], [15] instead of
estimating them separately. To take the maximal advantage of
scRNA-seq data, recent work [16] has focused on developing
network estimation methods specifically suited for such data
and has demonstrated their superior performance when com-
pared to conventional methods on count-valued data. PIPER
extends these approaches by using a local Poisson graphical
model with a penalty that enforce consecutive states in a
progression to have similar graph structures. PIPER thus
provides a scalable algorithm for learning a genome-wide
network from count-valued data. (2) Differential network
analysis: The most direct approach to solve this problem
is to identify genes whose connections change extensively
between pairwise conditions. While efficient, this method
relies heavily on the accuracy of the network structure
learning process. DISCERN [17], a more general framework
that utilizes the network parameters (edge weights) instead
of network structure, was shown to be robust to errors in
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network structure estimates. PIPER extends DISCERN by
identifying both perturbed genes and key regulators from
multiple structured conditions. PIPER utilizes both perturba-
tion analysis as well as jointly estimated network structures
to identify highly connected genes which undergo strong per-
turbations between different conditions. Additionally, unlike
DISCERN, these individual steps of PIPER are tailor-made
for scRNA-seq data by using a Poisson distribution.

The main contribution of this paper is the development
of a general statistical method that automatically predicts
key drivers of progressive gene network changes, using as
input scRNA-seq data measured in multiple points over the
progression.

II. METHODS

A. Identifying conditional dependencies between genes

Count-valued scRNA-seq data have been successfully
modeled by using the Poisson graphical models [16]. The
paper proposed the use of a local model for each node,
called the Local Poisson graphical model (LPGM), followed
by combining information from each of these local models
to infer the structure of the whole network. This is equivalent
to solving the following optimization problem:

Θ6=j,j = arg min
Θ6=j,j

− 1

n

n∑
i=1

[Xij(Xi,6=jΘ6=j,j)

− exp(Xi,6=jΘ6=j,j)] + ρ||Θ 6=j,j ||.
(1)

Here, the jth column of Θ ∈ Rg×g contains the LPGM
weights to model the expression level of gene j based on
all the other genes. Specifically, Θ6=j,j ∈ R(g−1) represents
the jth column of Θ except the jth element. X ∈ Zn×g+ is
a matrix of observed count values having n sample points
and g genes, Xij represents the value of the ith observation
of Xj , the subscript notation 6= j represents a sub-matrix of
the original matrix which contains all rows/columns except
the jth one (depending on where it appears in the subscript).
Finally, ρ ≥ 0 is the regularization parameter controlling the
amount of sparsity in Θ.

To leverage the availability of data from multiple struc-
tured states, PIPER extends the estimation step of the LPGM
formulation to multiple conditions as seen in equation 2.
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This formulation simply estimates the parameters for all
conditions (Θ1 ... Θt) together and has an additional regular-
ization term λ which penalizes the 2-norm distance between
networks estimated at neighboring states (k and k′). E(k, k′)
is an indicator function whose value is 1 if the states k
and k′ are adjacent, otherwise it is 0. We assume that the

adjacency of the observed states is known to the user apriori.
In the biological context, this modification allows us to model
several types of progressions such as cell type lineage trees,
differentiation events or spatial dependencies. This technique
has been successfully used in the past for GGM’s [14] and
is shown to result in fewer spurious network linkages.

B. Identifying highly perturbed genes between networks from
different states

Identification of genes whose dependencies change be-
tween two conditions has been done in the past by DIS-
CERN [17], an algorithm that ranks nodes whose regulators
have been perturbed the most. However, in its original
formulation [17], DISCERN was not explicitly designed to
work with scRNA-seq and hence made an assumption of a
Gaussian distribution for the data. Here we have adapted this
method for count-valued processes by assuming that the data
has a Poisson distribution.

Scoring perturbed genes requires first identifying the gene
regulatory network for two separate conditions followed by
calculating the perturbation score. The perturbation score
captures how well conditional dependencies of genes in one
condition can explain the data for the other condition. The
perturbation score is defined as follows:

PScore(wj , w
′
j) =

f(wj , X
′) + f(wj′ , X)

f(wj , X) + f(wj′ , X ′)
(3)

Where wj and wj′ are the vectors of regulator weights for
gene j in conditions 1 and 2. While X and X ′ are the
data sets for conditions 1 and 2 respectively. f(wj , X) is
the unpenalized local Poisson graphical model cost function
as seen in equation 1 (with ρ set to zero).

C. Identifying clusters of similarly perturbed genes

While there exist methods to identify perturbed nodes
between two conditions, they cannot be directly extended to
multiple conditions particularly in the form of a biological
progression. Here we propose identifying the clusters of
similarly perturbed genes in order to study genes potentially
regulating them.

In order to identify clusters of similarly perturbed genes,
we first normalize the PScore of each gene across all condi-
tions to have a 2-norm of 1. The normalized score for each
gene is then tiled at all conditions to estimate the relative
perturbation between conditions. The normalization for each
gene also ensures that all scores have roughly the same scale,
which is important for clustering and, moreover, it ensures
that condition-specific scores for genes that are predicted to
be highly perturbed at all conditions are low. Such genes are
unlikely to be master regulators since their perturbations are
expected to be condition specific. Next, we may perform an
optional step of setting a threshold value for the normalized
PScore to separate out genes that are not perturbed at any
condition. This step is not seen to be important for small
networks but is crucial for larger networks. Finally, we apply
k-means clustering to obtain clusters of genes that have
similar perturbation patterns across different conditions. The
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Fig. 1. An overview of the different steps involved in master regulator prediction by PIPER. The input to PIPER is scRNA-Seq data from different states
in a biological progression as seen in the cartoon on the left. The output of PIPER is the predicted set of key regulators for each stage of the progression
as seen in the cartoon on the right.

appropriate number of clusters can then selected by using
well known methods such as the ’elbow method’ [18].

D. Sparsifying network to improve specificity

Our network estimation method leads to the estimation
of several networks at each sparsity level (corresponding to
each value of ρ). For the purposes of this paper, we have
estimated several networks in the ρ = [0.01, 10] range. The
upper and lower cut-offs for ρ were empirically selected
by observing the structure of estimated networks. In order
to only retain edges we are confident about, we identify
the most conserved network structure between the networks
estimated at different values of ρ. This is done by first
constructing an unweighted adjacency matrix for each value
of ρ (Aρ(i, j) = I(|Θρ(i, j)| > 0), where I(.) is the indicator
function) and then taking the elementwise product of the the
adjacency matrices estimated for all values ρ as follows:

A(i, j) =
∏
ρ

Aρ(i, j) (4)

This network is then further sparsified by eliminating edges
of which the values of correlation between the two genes is
lower than a threshold value. For the purposes of this paper,
we empirically set this threshold to be the mean of the corre-
lations between all genes in the network. While sparsifying
the network might lead to the elimination of some actual
conditional dependencies, we argue that specificity is more
important to our problem of master regulator identification
than sensitivity. It must also be noted that unlike in [16],
we do not force A to be symmetric, thereby allowing it to
represent a directed graph.

E. Identifying key regulators with temporally or pseudotem-
porally hierarchical data

When the different conditions of the data set are in the
form of a temporal/pseudotemporal hierarchy, it roughly cor-
responds to a process where we have access to intermediate
stages of differentiation or development. Such a process can
be represented by a directed graph. Each state i will also
have an associated sparsified incidence matrix Ai. In such
a case, for each state node in the hierarchy, i, we first find
the highest valued PScore cluster(s) relevant to this state and
collect the indices of the genes in these cluster(s) into a set
S. We then find the number of times each gene in our data
set is predicted to be a regulator of the genes (in the set S)
in the state i as:

Ci(k) =
∑
j∈S

Ai(k, j). (5)

Here, Ci(k) is the number of highly perturbed genes targeted
by gene k in state i.

F. Identifying key regulators from snapshot data with missing
intermediate states

For some of the scRNA-seq data sets, the data are available
from a single time point containing only different mature cell
types. In such a case, to identify the key regulators in the
progenitor cell states that lead to each of the different mature
types, one has to infer them from the observed cell types.
A natural way to do this could be to look at the observed
daughter cell types of a unobserved progenitor cell type and
identify the highly perturbed hub genes between the different
conditions. Here we propose a strategy to do this when
the structure of the differentiation tree is known. First, we
construct a graph joining the closest observed cell state where
distance is measured by number of nodes along the tree
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separating a pair of nodes (we assume the true structure is
known apriori). The perturbation analysis is then performed
for each pair of neighbors (i, j) for this new graph. We then
find the cluster for which the mean PScore at the pairwise
condition (i, j) is highest and consolidate the genes in the
cluster into a set S. Lastly we find the number of times each
gene in our data set are predicted to be regulators of the
genes in pairwise condition (i, j) as:

Ciij(l) =
∑
k∈S

Ai(l, k)× Āj(l, k) (6)

Cjij(l) =
∑
k∈S

Aj(l, k)× Āi(l, k) (7)

Where Ciij(l) is the number of highly perturbed genes
targeted by gene l in pairwise-condition (i, j) that are specific
to state i. Ai is the incidence matrix at state i and Āi is the
complement of the incidence matrix.

III. RESULTS

A. Simulation study I: Testing the efficiency of perturbed
node estimation

To test the accuracy of the perturbed node estimation
process, we first generated synthetic Poisson distributed data
from random graphs with 30 nodes and 100 samples using
the methodology described in [16]. To simulate different
biological conditions, we randomly deleted 5% of the edges
from the original graph. Graphs of different sparsity levels
were generated by varying the connection probability be-
tween pairs of nodes. 20 random graphs were generated at
each sparsity level. We also used these data to demonstrate
the usefulness of joint network estimation by testing against
a variant of PIPER where the network similarity penalty λ
was set to 0. The ranking of perturbed genes for PIPER
is obtained by sorting genes according to their PScore
calculated between the two conditions. The accuracy at each
sparsity level is measured by calculating the mean of the
fraction of the N perturbed genes that are ranked in the
top N genes according to the different methods over all
trials (and values of ρ for PIPER and Treegl). We then
compare PIPER against various other specialized methods
for identifying perturbation in networks namely DISCERN,
Treegl (with perturbation identified with DISCERN), D1
Score, LNS Score and ANOVA (the latter three are computed
as described in [17]). For both PIPER and Treegl, the tuning
parameter λ (that enforces similarity between successive
conditions) is chosen to be the best performing one at each
sparsity level. It can be seen in Figure 2a that for graphs of
most sparsity levels, both formulations of PIPER outperform
all competing methods while the joint network inference
seems to have a higher accuracy than λ = 0 particularly
for sparser graphs.

B. Simulation study II: Testing key regulator identification
on synthetic data from scale-free networks

Having demonstrated PIPER’s accuracy at identifying
perturbed genes between networks from two different con-
ditions, we test its accuracy at identifying the key regula-

Fig. 2. a) Testing accuracy of PIPER at identifying perturbed genes for
graphs having different sparsity levels. The mean fraction of perturbed genes
that are correctly predicted is calculated by averaging across all values of
the sparsity parameter ρ. b) Comparison of predicted mean rank of actual
key regulator for various methods on scale free graphs of degree 3. PIPER
outperforms other methods in predicting the key regulator genes.

tors of a simulated biological progression. This is a three
state system where a single progenitor state differentiates
into two daughter states. The procedure for generating the
graph, perturbed graph and the data sets is similar to the
previous sub-section with the notable exception being that
here we assume the graph is scale-free [19] (average degree
= 3) i.e. its node degree distribution follows a power law.
Scale–free networks are common in biology and have many
nodes with small node degrees with a few nodes (called
hubs) having much higher node degrees. It has also been
demonstrated that most key regulators are hubs in their
respective networks [20]. Hence, when deleting the edges,
we first perform a weighted sampling (where the weights
are proportional to the degree of the node) and then select
one of the outgoing edges of the selected node, uniformly
at random to delete. This method ensures that hub nodes
are more likely to be the main regulators for the perturbed
genes. Due to the randomness of the edge deletion, the two
daughter networks are also different from one another. We
now use this method to generate 20 random set of networks
(and data sets) of the same dimension as the previous sub-
section with 10% of the edges deleted in the perturbed
network. We then proceeded to first obtain the PScores for
all genes, and the regulators of the genes with the top N
PScores, where N is the number of actually perturbed genes
(as in the previous sub-section). We then ranked the predicted
regulators of these genes according to their frequency of
occurrence. For each trial, we then used this ranked list to
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Fig. 3. time points from which the data is available. b) Clusters of P-scores across multiple days. c) Heatmap of number of different perturbed genes
targeted by the predicted key regulators of differentiation across different days. d) Expressions of different predicted key regulators plotted against pseudotime
inferred from Monocle. Peaks in expression patterns are closely match the stages on which the regulators are predicted to act.

find the predicted position of the actual top regulator for
each branch of the differentiation process and calculated the
average median rank across both branches. We found that
PIPER outperformed other algorithms in identifying the key
regulators when compared by the median predicted rank of
the actual top regulator (as seen in Figure 2b).

C. Case I: PIPER correctly identifies early and late regula-
tors of mouse embyonic stem-cell (mESC) differentiation

For a first application we used scRNA-seq data [1]
collected at four time points (day 0, 2, 4, 7) during differen-
tiation of mouse embryonic stem cells to epiblast cells. We
assume data from each day represents a different dominant
cell state during the differentiation process. We focused on
a panel of 89 genes comprising of essential housekeep-
ing genes, key regulators of mouse ES differentiation and
differentiation markers [21]. As per the PIPER workflow,
we first performed a joint network inference, followed by
gene perturbation estimation across successive conditions
and clustering of genes on the basic of PScores. This process
lead to the identification four distinct clusters of genes
(Figure 3b).

Next we identified the clusters that are relevant to each day

(by looking at the cluster that contained the highest PScore
for a particular day): cluster 1 for day 0, clusters 1 and 3 for
day 2, clusters 3 and 4 for day 4, and cluster 4 for day 7. For
each day we now only look at the genes from the clusters
relevant to the day and identify their regulators (shown in
Figure 3c). The column normalized heat map shows how
many perturbed genes are targeted by each regulator across
different days.

We note that most predicted regulators from early stages
(days 0, 2 and 4) are known differentiation regulators. For
example, Pou5f1, Sall4, Zfp42, Utf1, Sox2, Nanog, Esrrb,
Dppa5a, Rif1 are all known to have roles in maintaining
pluripotency [22]–[26]. Of these genes, Nanog and Sox2
have been widely reported to be among the earliest reg-
ulators of mouse ES differentiation [26], [27] and have
been correctly implicated by PIPER to control early stages
of differentiation (days 0 and 2, respectively). Moreover,
Rif1, which is predicted to regulate subsequent stages of
differentiation (days 2 and 4) is known to be activated by
Nanog [26], consistent with PIPER’s prediction. Since most
of the differentiation process is completed by day 4, we note
that the predicted regulators from day 7 are all housekeeping
genes.
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To further validate the accuracy of the order of regulator
action, we used Monocle [4] to order cells by differentiation
progress. This cell state information can then be used to plot
gene expression as a function of pseudotime (an arbitrary
metric representing progression along cell states). While
Monocle is not designed to identify the key regulators of
differentiation, one would expect the expression patterns of
our predicted regulators for different stages of differentiation
to show big changes during the predicted period of their
effect. This can be seen in Figure 3d, hence providing a
further validation to PIPER’s predictions.

D. Case II: PIPER identifies genes responsible for lineage
formation in neuronal cell types

Fig. 4. Application of PIPER to scRNA-seq data obtained from mouse
brain samples correctly identifies genes enriched for different neuronal cell
types. a) Neuronal stem cell lineage tree. b) Fraction of predicted regulators
of each stage belonging to different progenitor cell types. It can be seen
that the regulators of most daugther cell types are specific to the correct
progenitor type.

To test the accuracy of PIPER on branched snapshot data,
we looked at a data set [2] containing neurons and non-
neuronal cell types from the mouse cortex and hippocampus.
We focused on a sub-set of the dataset containing 3 mature
cell types deriving from a common precursor (namely as-
trocytes, oligodendrocytes and interneurons, Figure 4a). We
aim to identify the key regulators that drive differentiation
of the common neuronal stem cell precursor into each of the
three terminal cell types.

We first identified a subset of genes that are of interest for
differentiation. We started with a list of over 3,000 genes that
were reported in [2] to be uniquely upregulated in any one of
the main cell types. We then limited the list to 528 by exclud-
ing genes that do not have at least one count on average in

one of the cell types. This filtering step removed genes that
have too few counts to lead to a meaningful identification
of network structure. We then performed network estimation
with all three cell types and estimated the perturbation of
each cell type compared to their closest neighboring cell type
along the differentiation tree. Upon normalization of Pscores
and clustering, we were able to obtain three major clusters
of genes which are upregulated in at least one of the cell
type pairs. After thresholding, we were left with only 68 out
of 528 original genes. Next, we identified the regulators of
these genes by sparsifying the networks at each condition
as previously described in the Methods section. We thus
obtained the list of key regulators by retaining genes which
have regulate more than one perturbed gene. To check the
validity of our results we compared against the list of genes
unique to each cell type obtained from [2]. The genes specific
to each progenitor type is obtained by merging the list of
highly expressed genes for each of their daughter types. We
note that while this is an approximate way to obtain genes
specific to progenitor types, a more comprehensive list would
require data from the progenitor states themselves. Figure 4b
shows the fraction of predicted regulators unique to each of
the two conditions that overlap with genes associated with
different progenitor types according to [2]. It is interesting
to note that not only are most predicted regulators also
associated with correct progenitor cell types, when they do
overlap with other cell types it is usually with a closely
related cell type. Moreover, several of PIPER’s predicted key
regulator genes such as Dbi, Gsn, Olig1, Lgi3 or Tcf4 are
known to be important differentiation regulators of neuronal
cell types. Several of the genes identified by PIPER such as
Atp2a2, Mal, Hsd17b7, or Pdlim2 are known to play roles
in differentiation in other cell types. These genes could be
subject of future experimental study to determine their role
in neuronal differentiation events.

IV. CONCLUSIONS

In this paper we presented PIPER, a tool for identifying
key regulators of differentiation events from scRNA-seq data.
We demonstrated that PIPER can deal with various forms of
data, such as time-series data containing intermediate states
as well as data from one time point representing mature
differentiated cell types. We benchmarked the individual
components of PIPER on synthetic data and tested the
complete workflow on two different biological data sets.
PIPER predicted known key regulators of each differenti-
ation/development process and notably predicted the correct
temporal ordering of regulator action in mouse ES differen-
tiation.

Future work can be aimed at inferring the graph structure
of differentiation states along with the prediction of key
regulators. This change would address a current limitation
of PIPER, which is the need for an accurate differentiation
graph to be provided to the algorithm. While this graph
might be easy to obtain for well-studied processes, a more
general approach could enable the study of new processes
about which enough information is not available.
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