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Abstract— It has been suggested that changes in physiological
arousal precede potentially dangerous aggressive behavior in
youth with autism spectrum disorder (ASD) who are minimally
verbal (MV-ASD). The current work tests this hypothesis
through time-series analyses on biosignals acquired prior to
proximal aggression onset. We implement ridge-regularized
logistic regression models on physiological biosensor data wire-
lessly recorded from 15 MV-ASD youth over 64 independent
naturalistic observations in a hospital inpatient unit. Our results
demonstrate proof-of-concept, feasibility, and incipient validity
predicting aggression onset 1 minute before it occurs using
global, person-dependent, and hybrid classifier models.

Index Terms— autism, minimally verbal, aggression, physio-
logical arousal, naturalistic observation, logistic regression

I. INTRODUCTION

A substantial number of youth with autism spectrum
disorder (ASD) show unpredictable and potentially danger-
ous aggressive behavior [1–4]. Aggression is particularly
impairing in youth with ASD who are minimally verbal
(MV-ASD). Due to their difficulty to adequately self-report
increasing distress, aggression in MV-ASD is often unpre-
dictable, which makes it dangerous, difficult to manage, and
constitutes a barrier to accessing the community. In typically
developing youth, greater ability to regulate physiological
arousal is associated with fewer behavior problems [5].
Prior research suggests an association between physiological
arousal and problem behavior to alleviate distress in ASD
[6–10]. Thus, our current study evaluates whether proximal
biomarkers of physiological arousal [11], [12] can be used
to predict the onset of aggression before it occurs.

A growing number of researchers have approached this
goal using various observational designs [13–17]; however,
they all rely on artificial experimental settings and tasks that
call into question the ecological validity of obtained results.
In the present study, we utilize a novel data set in which
physiological biosignals were collected wirelessly from be-
haviorally unstable MV-ASD youth during unstructured in-
patient hospital observations. We employ ridge-regularized
linear classifiers with time-series features of cardiovascular
and electrodermal activity as physiological biomarkers of
imminent aggression. Using global, person-dependent, and
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hybrid (i.e., partially global) models, we demonstrate high
predictability of aggressive behavior onset in a specific
upcoming time interval. A preliminary version of this work
was presented in [18].

II. MATERIALS AND METHODS

A. Participants and Data Acquisition

Physiological and physical activity data collected from
15 ADOS-2 [19] confirmed, behaviorally unstable MV-ASD
youth recorded over 64 unstructured observational sessions in
the Developmental Disorders Unit at Spring Harbor Hospital,
Portland, ME, United States, were used in this Institutional
Review Board approved study. Data were collected during
naturalistic observational sessions at this specialized ASD
psychiatric inpatient unit using a wrist-worn E4 biosensor
(Empatica Inc., United States) as well as time-synchronized
and operationally defined (hitting, kicking, biting, scratching,
grabbing, pulling) coding of aggression to others by inpatient
research staff with at least 90% inter-rater reliability. All
MV-ASD youth in our sample tolerated the biosensor after
desensitization, usable data were obtained in all cases, and
a total observation time of approximately 83 hours was
achieved with an average of 5.5 ± 4.9 hours across partici-
pants. Aggressive episodes were observed 35.9 (SD = 34.1)
times with average durations of 31.9± 33.2 seconds.

To capture measures of physiological arousal, the follow-
ing autonomic nervous system indices were recorded by
the wrist-worn E4 biosensor: (1) heart rate and heart rate
variability, which is a measure of the variation in beat-to-
beat interval, both derived from blood volume pulse (BV P )
and inter-beat interval (IBI) via photoplethysmography [20]
at 64 Hz; and (2) electrodermal activity (EDA) sampled at 4
Hz, which reflects autonomic innervation of sweat glands and
provides a sensitive measure of alterations in physiological
arousal. To quantify changes in physical activity, the E4
records movement acceleration (ACC) using an embedded
3-axis accelerometer at 32 Hz sampling rate.

B. Time-Series Feature Extraction

Statistical analyses of physiological and physical activity
signals were performed through extracted time-series fea-
tures offline. For each one of the 6 signal sources (i.e., BV P ,
IBI , EDA, ACCx, ACCy , ACCz) the following features
were calculated in bins of 15 seconds: first, last, maximum,
minimum, mean and median value, amount of unique values,
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and the sum, standard deviation, and variance of values
within a bin. To exploit temporal information of aggres-
sion episodes, we extracted two more features using time-
synchronized binary aggression labels offline; time since
past aggression (TPA), which indicates the amount of time
elapsed since the last observation of an aggression episode;
and a binary aggression observation flag (AOF ) feature,
indicating whether an aggression episode has so far occurred
within that recording session. The standard deviation of each
calculated feature across time-series bins was included in all
prediction models.

C. Ridge-Regularized Logistic Regression Classifier

Binary decision making on aggressive behavior onset was
performed through a ridge-regularized logistic regression
model. Among all extracted features (see Section II-B), the
following five different feature subsets were used as predictor
variables in our analyses: (1) only temporal information
(TPA, AOF ); (2) only physical activity (ACC); (3) only
physiological activity (BV P , IBI , EDA); (4) physical
and physiological activity features combined (BV P , IBI ,
EDA, ACC); and (5) all features combined (BV P , IBI ,
EDA, ACC, TPA, AOF ).

At every time point t, using features extracted in a previous
time range [t − τp, t), a classifier was used to predict a
binary dependent variable, estimating whether aggression
will be observed or not in an upcoming time range (t, t+τf ].
We adopted a 5-fold cross-validation protocol to generate
training and testing data splits, repeated five times to produce
confidence intervals. Predictions with particular values of τp
and τf were performed via the following schemes:

1) Global Prediction Models: Time-series data across all
participants and observational sessions were concate-
nated. Using the training data split obtained, a single
classifier was constructed as the global model.

2) Person-Dependent Prediction Models: Data were
pooled across all observational sessions within each
one of the 15 participants individually. Obtained train-
ing data splits were used to construct 15 distinct
person-dependent prediction models.

3) k-Hybrid Prediction Models: In this framework,
person-dependent prediction models were trained in
a partially global scheme. Specifically, k most sig-
nificant physiological or physical biomarker features
were identified via their regression weights in the
global models (i.e., k features with the highest weight
magnitudes). Using each participant’s pooled data, the
corresponding k feature weights were trained globally,
whereas the other feature weights were trained solely
on person-dependent data. In this scheme, 15 k-hybrid
prediction models are constructed for each participant.

Considering a predictive variable feature space dimen-
sionality of d which varies with τp, iterative training of
logistic regression weights at every cross-validation fold
requires estimation of d hyperparameters for global models,
and d × S hyperparameters for person-dependent models
where S denotes the number of participants. In k-hybrid

models, the number of hyperparameters to be estimated are
((d − k) × S) + k. This becomes more computationally
parsimonious with respect to person-dependent models when
the number of participants S is high.

III. RESULTS

Classification analyses for particular values of τp and τf
were performed through global, person-dependent, and k-
hybrid models. To evaluate performance, Receiver Oper-
ator Characteristic (ROC) curves and corresponding Area
Under the Curve (AUC) values were calculated through
probabilities that logistic regression classifiers generate two
classes: aggression and non-aggression. Data were processed
for decision making every 15 seconds, resulting in 18, 869
samples in global models.

A. Global Prediction Models

Global prediction models of aggression in the upcoming
one minute using all extracted features from the past τp = 60
seconds resulted in the blue solid ROC curve presented
in Figure 1(a) with a corresponding AUC value of 0.69.
Figure 1(b) depicts increases in AUC when E4 biosensor data
is included, compared to using any other subset of features
to predict aggression episodes.

Regarding the relationship between past time range (τp)
and future time range used to make aggression onset pre-
dictions (τf ), Figure 1(c) depicts stationary performance
in global models using all features from various past τp
durations. However, when using physical and physiological
biosensor data from the past (c.f. bold dashed red curve), we
observe relative AUC increases compared to temporal data
of past aggression only (c.f. light dotted dark blue curve).

B. Person-Dependent Prediction Models

We repeat the above analysis for τp = τf = 60 seconds in
person-dependent models; Table I contains the corresponding
mean AUCs. Across participants, we observe an average 0.16
increase in AUC values up to 0.80 using E4 biosensor data
compared to using temporal aggression information only.
Figure 1(a) shows ROC curves corresponding to person-
dependent model prediction performance using all features
compared to the global prediction model with the same
parameters. We observe a higher mean AUC and a much
favored behavior of steep increases of sensitivity for low false
positive rates in most person-dependent models compared to
global prediction models.

C. k-Hybrid Prediction Models

Table II demonstrates results obtained by k-hybrid models
with τp = τf = 60 seconds for varying values of k. For
parameter τp = 60, dimensionality of feature vectors became
d = 310 when all extracted features in bins of 15 seconds
were concatenated to be used as predictor variables. In this
case, by definition (see Section II-C), a k-hybrid model
with k = 310 is equivalent to a global prediction model.
Mean AUC values of the k-hybrid models yielded stationary
performance between person-dependent and global models
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Fig. 1. (a) ROC curves with 90% confidence intervals to predict onset of aggression in the next minute, using all features from the past minute. The blue
solid line represents the global prediction model, and each curve with dashed lines represents one of the person-dependent models. (b) Mean AUC values
of the global models varying as a function of τf using features from the past minute; and (c) as a function of τp at τf = 60 seconds. For (b) and (c),
each color represents one of the five feature subsets as indicated. Error bars represent minimum and maximum values across cross-validation repetitions.

TABLE I
AUC VALUES AVERAGED ACROSS CROSS-VALIDATION REPETITIONS IN PERSON-DEPENDENT PREDICTION MODELS WITH τp = τf = 60 SECONDS

(I.E., PREDICTING AGGRESSION ONSET FOR THE NEXT MINUTE, USING ACCUMULATED DATA FROM THE PAST ONE MINUTE).

Features P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Mean SD

Temporal 0.67 0.58 0.63 0.66 0.77 0.54 0.67 0.68 0.73 0.59 0.65 0.51 0.61 0.65 0.63 0.64 0.07

Physical 0.63 0.69 0.69 0.62 0.76 0.53 0.76 0.71 0.80 0.76 0.77 0.92 0.66 0.55 0.75 0.71 0.10

Physiological 0.76 0.57 0.76 0.56 0.82 0.61 0.80 0.61 0.83 0.90 0.77 0.86 0.58 0.65 0.76 0.72 0.11

Physical and
Physiological 0.75 0.67 0.76 0.63 0.84 0.63 0.83 0.73 0.85 0.95 0.81 0.93 0.69 0.74 0.80 0.77 0.10

All Features
Combined 0.76 0.67 0.79 0.67 0.88 0.67 0.85 0.79 0.89 0.96 0.82 0.93 0.70 0.75 0.80 0.80 0.09

TABLE II
AUC VALUES AVERAGED ACROSS CROSS-VALIDATION REPETITIONS IN PREDICTION MODELS WITH τp = τf = 60 SECONDS. BY DEFINITION OF THE

k-HYBRID MODELS, k = 0 CORRESPONDS TO PERSON-DEPENDENT MODELS, WHEREAS k = 310 CORRESPONDS TO THE GLOBAL MODEL.

Model k P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Mean SD

Person-
Dependent 0 0.76 0.67 0.79 0.67 0.88 0.67 0.85 0.79 0.89 0.96 0.82 0.93 0.70 0.75 0.80 0.80 0.09

k-Hybrid 1 0.73 0.58 0.74 0.60 0.86 0.57 0.83 0.76 0.86 0.87 0.81 0.87 0.67 0.69 0.75 0.75 0.11

k-Hybrid 10 0.74 0.57 0.75 0.62 0.86 0.54 0.83 0.76 0.87 0.86 0.81 0.87 0.67 0.69 0.74 0.75 0.11

k-Hybrid 100 0.75 0.57 0.76 0.67 0.87 0.53 0.83 0.77 0.86 0.85 0.81 0.83 0.69 0.71 0.73 0.75 0.10

k-Hybrid 200 0.76 0.59 0.73 0.70 0.87 0.52 0.83 0.77 0.87 0.84 0.80 0.83 0.68 0.71 0.72 0.75 0.10

k-Hybrid 300 0.74 0.60 0.70 0.69 0.85 0.54 0.81 0.75 0.83 0.70 0.73 0.77 0.66 0.67 0.62 0.71 0.09

Global 310 − − − − − − − − − − − − − − − 0.69 −



with 0.75 for a k value as high as 200. While partially glob-
alizing the model slightly reduced AUC values compared to
person-dependent models, model training becomes computa-
tionally more efficient. Thus, the k-hybrid framework serves
as a partially global model alternative that approximates
person-dependent accuracies with shorter model training
run time. Furthermore, although person-dependent models
provide better accuracies, they cannot be used to predict
aggression onset for a new patient for whom no prior data is
available. From that perspective, hybrid models are desirable
in that predictive power can be maintained by having some
parameters trained globally, and then combined and updated
as person-dependent training data becomes available.

IV. DISCUSSION

In the present study we demonstrate that naturalistically
observed aggressive behavior in MV-ASD youth in a hospital
inpatient setting can be predicted with high accuracy using
preceding physiological and physical activity biosensor data
and temporal information on recently observed aggressive
episodes. We implemented linear classifier models with
regularization over relevant time-series features during train-
ing. Our results demonstrate proof-of-concept, feasibility,
and incipient validity predicting proximal aggression in this
population and setting using biosignal data in global, person-
dependent, and hybrid models.

As communicated to us by inpatient clinical staff, the po-
tential benefit of avoiding or reducing a dangerous aggressive
event is likely to outweigh the potential harm associated with
a false positive in clinical practice. Predicting aggression
onset during naturalistic observation in the upcoming 1
minute with at least 80% sensitivity is of high clinical
value and could create new opportunities for preventing or
mitigating aggression emergence, occurrence, and impact in
MV-ASD [18].

Regarding future work, we will next model aggression
onsets as a non-homogeneous Poisson process to assess
whether they can yield more robust global prediction mod-
els. Using this framework, we will also evaluate whether
regressing hazard rates from past observations can be per-
formed through maximum likelihood estimation, comprising
an iterative solution of several weighted linear regressions
[21], and lead to improved predictive performance across
upcoming time ranges.
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[18] M. S. Goodwin, O. Özdenizci, C. Cumpanasoiu, P. Tian, Y. Guo,
A. Stedman, C. Peura, C. Mazefsky, M. Siegel, D. Erdoğmuş, and
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