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Abstract

Traumatic brain injury (TBI) is a global health challenge. Accurate and fast automatic detection of

hematoma in the brain is essential for TBI diagnosis and treatment. In this study, we developed a

fully automated system to detect and segment hematoma regions in head Computed Tomography

(CT) images of patients with acute TBI. We adapted the structure of a fully convolutional network

by introducing dilated convolution and removing down-sampling and up-sampling layers. Skip

layers are also used to combine low-level features and high-level features. By integrating the

information from different scales without losing spatial resolution, the network can perform more

accurate segmentation. Our final hematoma segmentations achieved the Dice, sensitivity, and

specificity of 0.62, 0.81, and 0.96, respectively, which outperformed the results from previous

methods.

I. INTRODUCTION

Traumatic brain injury (TBI) is associated with a high mortality and morbidity rate. To

facilitate the diagnosis and evaluation of TBI, Computed Tomography (CT) is the preferred

imaging modality during the first 24 hours after the injury [1] because of its low cost, rapid

scanning capability, and availability. The volume, location, and shape characteristics of

hematoma detected in CT are significant factors for the physician to evaluate the severity of

the TBI and perform appropriate treatment [2]. Also, many studies show that the volume of

brain hematoma is vital for outcome prediction and agent efficacy estimation [3], [4].

Since the manual examination of CT scans is tedious and prone to errors in the estimation of

hematoma volume, automatic hematoma detection and segmentation can efficiently decrease

medical costs by reducing the time for image analysis, while providing more accurate

clinical parameters for the physician to make appropriate and timely medical decision. It is a

challenging task because CT has poorer tissue contrast than MRI.
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Despite this challenge, many CT-based hematoma segmentation algorithms have been

proposed. A semi-automated brain hematoma segmentation method was introduced in [5],

where the user can provide a fixed intensity threshold to initialize seed point and then the

region growing was performed for the segmentation. Liao et al. [6] found candidate

hematoma regions using ‘standard’ thresholds and connectivity and the multi-resolution

binary level set segmentation was applied to divide the soft tissue regions into normal brain

tissues and hematomas. In [7], a Gaussian Mixture Model (GMM) was built by taking four

components (i.e., hematomas, gray matter regions, white-matter regions, and catheter,

respectively) of Gaussian density and calculating the density using Expectation

Maximization (EM) until convergence was reached. Most of the methods rely on intensity

values to generate seeds or region-of-interest mask as the first step. Although there are

textbook CT numbers for different tissues, the variation of CT numbers due to various

scanning parameters and physical complications such as scattering has been pointed out by

many studies [8], and it is common that the intensity range of hematoma tissue overlaps that

of normal brain tissue.

Recently, convolutional neural networks (CNNs) have achieved extensive success in image

recognition and segmentation. They are supervised models that can learn discriminative

features automatically, often outperforming models using hand-crafted and knowledge-based

features. Grewal et al. [9] proposed Recurrent Attention DenseNet that uses DenseNet

architecture as a baseline CNN to learn slice-based features. These features are then

integrated into a Long Short-Term Memory network that utilizes the 3D context to make a

final, pixel-wise classification. In [10], a 3D CNN with patch-wise training followed by a

fully connected conditional random field was proposed for brain lesion segmentation.

In this work, we proposed a fully convolutional network (FCN) combined with dilated

convolutions to segment hematoma in patients with acute TBI. It takes inputs of arbitrary

size and produces correspondingly-sized output with pixel-wise prediction. The modern

CNNs integrate multi-scale contextual information via successive down-pooling layers, and

this down-pooling will reduce the resolution of the dense prediction. To overcome this

conflict, we integrated dilated convolutions, proposed by Yu et al. [11], that aggregate multi-

scale contextual information without losing resolution. In our experiments, we found that the

model we designed outperformed the previous methods and achieved a satisfying

segmentation for brain hematomas.

II. Methods

A. Preprocessing

All the CT scans are stored in Digital Imaging and Communication in Medicine (DICOM)

format. We first performed the CT numbers conversion:

IHU = Iraw  ×  slope  +  intercept  (1)

where Iraw is the image with gray values stored in DICOM format, IHU is the transformed

image with CT numbers, and slope and intercept are parameters retrieved from the DICOM

header file. CT number is defined in Hounsfield units (HU).
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A linear mapping shown in (2) was performed to scale the dynamic range of HU in 16-bit

DICOM format into 8-bit grayscale:

I(i, j) =

0 IHU(i, j) < a

IHU(i, j) − a
b − a × 255 a ≤ IHU(i, j) ≤ b

255 IHU(i, j) > b

(2)

where I is the image after intensity scaling, a = wc − ww
2 , b = wc + ww

2 , and ww and wc are

the window width and the window center, respectively, obtained from the DICOM header

file. Although CT numbers have a wide range, neural soft tissue only lies in a small interval.

Commonly, a window width of 80 HU and window center of 40 HU, i.e., a = 0 HU and b =

80 HU, are used to visualize brain CT images. In this study, as acute hematomas are usually

brighter than brain tissues, we used a = 0 HU and b = 140 HU to cover more pathologic

tissue.

B. Architecture

U-net is an extension of FCN proposed in [12] that can be trained using relatively few

images. It is named by its U-shape where the input is down-sampled by successive max-

pooling layers and then up-sampled to generate dense predictions. We modified U-net by

incorporating dilation convolution as described in [11].

Let us define the discrete convolution operator * as

(F * k)(p) = ∑
s + t = p

F(s)k(t) (3)

where F : ℤ2 ℝ is a discrete function and k : Ωr ℝ, Ωr = [−r, r]2, r ∈ ℤ is a discrete filter

of size (2r + 1)2, t are from [−r, r]2, s, p are from ℤ2. With a dilation factor l, the dilated

convolution is defined as

(F * k)(p) = ∑
s + lt = p

F(s)k(t) (4)

Since we removed most of the down-pooling and up-pooling layers, we named the left side

of our architecture as the localization path and the right side as the segmentation path to

elucidate their roles. As shown in Figure 1, our architecture is comprised of 4 blocks, with

each block having two 3×3 convolutional layers in the localization path and two

convolutional layers in the segmentation path. For the first block, the convolutional layers

are followed by a 2 × 2 max pooling layer with a stride of 2 in the localization path and a 2 ×
2 up-sampling layer using repetition in the segmentation path to reduce the GPU memory

load and computational cost. As described in [11], without down-sampling layers, the

dilated convolutions can aggregate multi-scale context information and avoid losing

resolution, which will increase the accuracy of dense prediction. Thus, in remaining blocks,

all down sampling and up sampling layers are removed and convolutional layers are dilated
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with a dilation factor k. A batch normalization layer [13] is added after every convolutional

layer, and then the rectified linear unit (ReLU) is used as the activation function. In CNNs,

as the inputs pass increasing numbers of convolutional layers, the feature maps become

coarser and tend to represent features in a higher level. To compensate the loss of fine

structure information and combine coarse, high level information with fine, low level

information, the feature maps Fi1 from the block i in localization path are concatenated with

the input Ii2 in segmentation path of the same block, i.e. the feature maps F(i+1)2. As a result,

the channel dimension of inputs for the first convolutional layers in each blocks

segmentation path are doubled as: {Fi1, F(i+1)2}. Finally, the feature maps from the first

blocks segmentation path go through a 1 × 1 convolutional layer and an element-wise soft-

max function to generate the final segmentation map.

In our design, the left side of the architecture aims to utilize contextual information and

extract textural features to distinguish different components in brain and predict a rough

localization mask and the right side integrates both low-level and high-level features to make

final segmentation. But it should be noted that the localization and segmentation process

cannot be separated explicitly.

C. Training

The preprocessed CT images and manually labeled segmentation masks were used to train

the network. Considering the limited number of training images with hematomas, we used

rotation and elastic transforms to augment our training data; enabling the learning algorithm

to infer rotation and transformation invariance. A general image transformation can be

defined as

T(x + Δx, y + Δy) = I(x, y) (5)

where I is the input image and T is the distorted image. In the elastic transform [14], a

displacement field is first generated where Δx and Δy are random values sampled from the

uniform distribution U(−1, 1). After that, a Gaussian distribution with standard deviation σ
and multiplied by a scale factor α was used to convolve Δx and Δy. When σ is large, the

resulting values are close to 0, which is the average of random values and when σ is small,

the displacement field is a completely random filed. In this study, we used σ = 5, α = 3 to

generate distorted images as in (5). No change in the image size was induced by

implementing these data transformations.

In the last layer, the number of feature channels is the same as the number of classes K. In

this study, K = 2. The loss is defined by a sum of a pixel-wise weighted cross entropy over

the final feature map:

loss = ∑
x ∈ Ω

w(g(x)) log ag(x)(x) (6)

where ak(x) is the activation in the kth feature channel at the position x ∈ Ω , g : Ω → {1,

…, K}, Ω = ℤ2 is the ground truth at the pixel level, and w(g(x)) : 1, …, K ℝ is a weight

function to put pixels in different classes with predefined importance. In this study,
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considering that the hematoma regions were much smaller than normal regions, we gave

pixels belonging to hematomas two times the importance to avoid bias.

The L2 weight decay regularization of 0.0005 was used to improve the generalization ability

of the model. The Adam optimizer was used to minimize the cross-entropy loss with an

initial learning rate of 10−4. The learning rate was reduced to 1/10th of the current value

when the validation loss stopped decreasing after 20 epochs. The network weights were

initialized according to the Xavier scheme as described in [15]. The model was trained for

200 epochs with a batch size of 10.

D. Post-processing

The output of the CNN usually contains some small false positive regions which is result

from the heterogeneities in the intensity of soft tissues. A simple post-processing method

was designed based on the prior knowledge that a hematoma should be large enough to be of

clinical importance. In this study, we assumed hematomas regions are always more than 1

cm in thickness. In other words, if there is a hematoma region in one image, then there must

be other connected regions of hematoma similarly located on the slices either above or

below that image. Otherwise, we can either say that the hematoma detected in this image is

very likely to be a false positive or it is a very small hematoma that is not clinically

important. We used the breadth-first search algorithm to find out and remove such false

positives.

E. Evaluation

We computed accuracy, sensitivity, and specificity of the pixel level predictions for each

patient. The Dice coefficient was calculated for each patient to evaluate the overall

segmentation performance and it takes the format:

 Dice  = X ∩ Y
X + Y (7)

where X is the predicted hematomas and Y is the hematomas in the ground truth, and |X|

denoting the number of pixels in X. The volume of the hematoma can calculated as:

Volume  = X ×  slice spacing  ×  pixel spacing 2 × 10−3 (8)

where slice spacing and pixle spacing can be determined by parameters in DICOM

metadata. The volume is in cm3.

III. Experimental Results

The dataset we used consists of 27 cases from a dataset of patients with Acute TBI admitted

at University of Michigan Health System and 35 cases from Progesterone for Traumatic

brain injury: Experimental Clinical Treatment (ProTECT) [7]. The ProTECT study involved

adults who experienced a moderate to severe head injury and patient were enrolled in an

emergency department within 4 hours of their injury. In total, 2433 axial CT images of 4.5 to

5mm slice thickness from 62 patients who suffered from acute TBI were used in this study.
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We randomly split the data into the training set (n=48) and test set (n=14). An experienced

medical expert sifted and examined through 2D cross-sectional slices, manually drew the

boundary around hematoma regions on every slice to generate the ground truth.

Figure 2 gives two examples of our segmentation result compared with the ground truth. The

first row in Figure 2 shows our model is resistant to the effect of the bones and other

anatomical structures. The second row presents a challenging case, where the hematoma

regions are dispersed around the skull and with different shapes. Our model can accurately

localize the hematoma regions and perform a delicate segmentation.

We evaluated the performance of our model on different volumes of brain hematomas.

Clinically, the volume of a hematoma can reflect the severity of TBI. The larger the

hematoma, the more important it is that our model detect and segment it successfully. From

Table I, our method can segment larger hematomas with a very high Dice score.

Finally, the segmentations achieved by our trained model were compared with the ground

truth, and Table II is a summary of that evaluation. A previous method using GMM

combined with EM and the original U-net were used for the comparison. The results show

that our trained model has better segmentation performance.

IV. Conclusion

In this paper, we presented a modified U-net integrated with dilated convolution. Our results

show that removing down/up-sampling layers and integrating dilated convolution can

improve the resolution of dense prediction and improve the final segmentation performance.

The Dice score for hematoma segmentation is 0.62, and it achieved a significant increase

compared with GMM. Future work could continue to improve the segmentation

performance by integrating 3D contextual information.
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Fig. 1.
The Network Architecture. The left side of the network is the localization path, and the right

side is the segmentation path. The spatial size and the number of feature maps are given. The

network contains four blocks, and each block consists of convolution layers in both paths. In

the same block, the feature maps from the localization path are concatenated with the input

of the segmentation path. Fij denotes the feature maps from blocks, where i is the index of

block. If j = 1, the feature maps are in the localization path. Otherwise, they are in the

segmentation path. The dimensions of feature maps and the dilation factor l used in each

block are given.
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Fig. 2.
Segmentation results. Each row gives an example of the segmentation compared with the

ground truth. The left column: images after intensity stretch; the middle column: ground

truth; the right column: segmentations from our method

Yao et al. Page 9

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2021 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yao et al. Page 10

TABLE I

Evaluation of the model on different volumes of hematomas

Size Tiny Small Medium Large Very Large

Volume <1 1–10 10–25 25–50 >50

Dice (stddev) 0.49 (0.25) 0.59 (0.18) 0.66 (0.18) 0.70 (0.19) 0.80 (0.081)
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TABLE II

Overall segmentation performance

Method Dice Sensitivity Specificity Accuracy

Our proposed method 0.62 0.81 0.96 0.95

U-net [12] 0.58 0.76 0.94 0.92

GMM [7] 0.39 0.51 0.91 0.88
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