Abstract:
Research on snores for Obstructive Sleep Apnea Syndrome (OSAS) diagnosis is a new trend in recent years. In this paper, we proposed a snore-based apnea and hypopnea event...Show MoreMetadata
Abstract:
Research on snores for Obstructive Sleep Apnea Syndrome (OSAS) diagnosis is a new trend in recent years. In this paper, we proposed a snore-based apnea and hypopnea events classification approach. Firstly, we define the snores after the apnea event and during the hypopnea event as apnea-event-snore (AES) and hypopnea-event-snore (HES), respectively. Then, we design a new feature from the trend of the amplitude spectrum of snores. The newly proposed feature can be viewed as an improvement of the Mel-frequency cepstral coefficient (MFCC) feature, which is well-known for speech recognition. The extracted features were fed to principle component analysis (PCA) for dimension reduction and support vector machine (SVM) for apnea and hypopnea events classification. The experimental results demonstrate the efficiency of the proposed algorithm in using snores to classify apnea and hypopnea events.
Published in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 18-21 July 2018
Date Added to IEEE Xplore: 28 October 2018
ISBN Information:
ISSN Information:
PubMed ID: 30441712