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Abstract

In this paper, we propose a new technique for interpolating shapes in order to upsample a sparsely 

acquired serial-section image stack. The method is based on a maximum a posteriori estimation 

strategy which models neighboring sections as observations of random deformations of an image 

to be estimated. We show the computation of diffeomorphic trajectories between observed sections 

and define estimated upsampled image sections as a Jacobian-weighted sum of flowing images at 

corresponding distances along those trajectories. We apply this methodology to upsample stacks of 

sparse 2D magnetic resonance cross-sections through live mouse hearts. We show that the 

proposed method results in smoother and more accurate reconstructions over linear interpolation, 

and report a Dice coefficient of 0.8727 against ground truth segmentations in our dataset and 

statistically significant improvements in both left ventricular segmentation accuracy and image 

intensity estimates.

I. INTRODUCTION

Segmented image acquisition techniques as employed for cardiac magnetic resonance (MR), 

wherein only portions of the imaging data are acquired per heartbeat or breath-hold, are 

typically acquired at an in-plane resolution several times finer than the slice thickness [1]. 

Serially assembled image volumes that are acquired at anisotropic resolutions suffer from a 

lack of smoothness in the out-of-plane imaging axis. The roughness of the resulting image 

volume is not easily corrected by traditional interpolation or smoothing techniques and can 
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cause downstream problems in image registration, segmentation, or construction of 

parametric representations.

The continuity and smoothness of anatomical structures is a critical assumption in the 

quantitative investigation and modelling of the variability of anatomical shapes [2] 

(computational anatomy). The macroscale anatomy of the body is generally known to be 

composed of continuous structures, even in highly complex anatomical regions. Clearly 

defined anatomical boundaries enable applications such as atlas-based registration and 

image segmentation.

General interpolation of shapes is a well-explored field of study. Traditional shape 

interpolation involves computing smooth trajectories between defined correspondences [3]. 

Other groups have proposed interpolation of longitudinal datasets and registration of time 

series [4], interpolation by geodesic flows [5], [6], population models [7], or joint modeling 

of shape and image intensity [8]. These methods generally involve extraction of image 

features and segmentation [9] or pairwise optical flow from neighbor to neighbor [10], [11].

Several studies have focused on developing methods to perform 3D reconstruction of the 

cardiac left ventricle (LV) from sparse MR imagery. These methods either employ 

interpolation [13] or surface-fitting to endocardial and epicardial contours using some pre-

defined geometry [14]. Other approaches rely on diffeomorphic mapping of a high-

resolution LV surface mesh to a set of sparse 2D short axis LV contours [15]. More recently, 

constrained neural network approaches have been used to incorporate prior anatomical 

knowledge to enhance sparsely collected 2D cardiac MR imagery [16]. These methods 

mostly rely on population-based atlases, predefined geometry (prolate-spheroidal) or 

training on ground truth data sets to reconstruct the 3D LV shape.

In this paper, we propose a method to upsample serially-acquired sparse 2D MR cross-

sectional cardiac imagery based on a definition of a weighted mean derived from the well-

known statistical template estimation framework in computational anatomy. This method 

relies solely on the intrinsic constraint provided by the geometry of acquired sparse 2D MR 

images and does not require training or model fitting. The definition of a sliding windowed 

average of image slices with arbitrary center along an axis of a 3D image volume provides a 

flexible but robust framework for computing trajectories between shapes in neighboring 

image sections.

II. METHODS

A. Data

As a part of ongoing project, in-vivo heart images of 5 adult male wild type (n = 2) and 

Galectin-3 knockout (n = 3) mice were acquired using Bruker NMR/MRI spectrometer 

equipped with a 11.7T magnet and a gradient set capable of developing gradient strengths of 

740mT/m (Bruker Biospin, Germany). The mice were positioned on the MRI 4-channel 

surface coil and an MRI gating trigger was established via ECG leads and a respirator pillow 

was used. Cine MRI was collected (15 frames, echo time (TE) = 1.9708 ms, repetition time 

(TR) = varied according to the heart rate, slice thickness of 0.8 mm, in plane resolution of 
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0.1307 × 0.1307 mm2, flip angle = 12, NEX = 6) at 6–8 short axis slices through the LV. The 

animal protocol was approved by the Institutional Animal Care and Use Committee of the 

Johns Hopkins University. The left ventricle was manually segmented in each short-axis 

acquisition by an independent expert using a freely available semi-automatic software 

package called Segment [12]. Figure 1 shows some examples of the dataset.

B. Diffeomorphic Trajectories

We constrain the trajectories between corresponding shapes to be diffeomorphisms. Here, 

we briefly review diffeomorphic image registration under the large deformation 

diffeomorphic metric mapping (LDDMM) framework and its relation to template estimation. 

We define the relationship between any two images I and J of an anatomical structure by 

some deformation g such that I = J ∘ g−1. As first described in [17], it is possible to restrict 

the deformation g to a diffeomorphism φ by modeling it as a flow parameterized by a time-

dependent velocity field vt, such that

φt(x) = x + ∫
0

t
vt φt(x) dt (1)

where we call t = 1 the endpoint of the flow. Diffeomorphisms have the advantage of being 

smooth, 1-to-1, and invertible, which are desirable properties for preserving topology in 

anatomy. The image sum-of-squared-error matching problem is then written:

v = argminvt∫0

1
υt V

2 dt + 1
σ2 J ∘ φ−1 − I L2

2
(2)

where σ is a weighting factor on the matching term and subscript V indicates the norm of 

smooth velocity fields in a reproducing kernel Hilbert space. In our case, because we have 

manual left ventricle segmentations in each section, we employ a multichannel model where 

each section is represented by a two-channel image, the first being the grayscale image and 

the second being the segmentation image. This modified matching problem is written:

v = argminvt∫0

1
υt V

2 dt + ∑
c = 1

C 1
σi2

J( ⋅ , c) ∘ φ−1 − I( ⋅ , c) L2
2

(3)

where C is the number of image channels.

C. Interpolation by Jacobian-Weighted Averaging Along Flow Trajectories

Having constrained ourselves to diffeomorphic trajectories between shapes, we now turn to 

estimation of a statistical average of shapes in images. We apply the framework of Bayesian 

template estimation, first described in [18]. Template estimation is traditionally employed to 

compute atlas images which are minimally distant (in terms of some similarity metric) from 

a sample of some population of images. We take the same maximum a posteriori approach 

here, where our population subjects or observations Ii are the neighboring slices to a desired 

position to be upsampled.
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We define our estimate of the data at an unobserved position as a Jacobian-weighted mean of 

the population along their diffeomorphic trajectories. The diffeomorphic trajectories are 

solved by the minimization in Eqn. (3). In the classic template estimation case, these 

minimizations are performed iteratively such that population subjects are mapped to an 

iterative estimate of the population’s centroid or mean. The per-iteration estimate of the 

mean image is given by a weighted sum at the endpoints of these trajectories:

I(k + 1) =
∑i = 1

N Ii ∘ φvi
(k) Dφvi

(k)

∑i = 1
N Dφvi

(k)
(4)

where φvn(k) is the diffeomorphism of the velocity field v for observation i at iteration k, N is 

the number of population subjects, and D indicates the Jacobian determinant of φ in space. 

The notion of weighting by the Jacobian determinant Dφvi
(k)  is a natural one as the Jacobian 

encapsulates the change of coordinates from each observation to the mean. It is, in a sense, 

weighting the importance of the observations - for instance, if a pixel in the mean/centroid 

space maps to many pixels in an observation, that pixel should be more heavily weighted in 

the computation of the average image by a degree commensurate to its importance. In [18]’s 

formulation, this process is repeated until the mean image converges to the desired 

minimally distant population mean.

In the case of image slice upsampling, the two observed slices neighboring the z-position 

where we want to upsample the volume are the only two population “subjects” or 

“observations”. The mean along the diffeomorphic trajectory between a pair of images is a 

simpler problem which does not require the notion of a large population’s centroid and can 

be computed in a single shot without an iterative procedure. As such, we define a weighted 

mean

Ir =
I0 φ0

0, r
R Dφ0

0, r
R 1 − r

R + I1 φ1
1, r

R Dφ1
1, r

R r
R

Dφ0
0, π

R 1 − r
R + Dφ1

1, π
R

R

r (5)

where R is the z-axis distance between two observed slices I0 and I1 and r is the z-axis 

distance from I0 at which to estimate the interpolation between the observations. We use 

Eqn. (5) to directly compute the the midpoint (or any arbitrary point) along the trajectory 

between I0 and I1 in a single iteration. We expect the flow to be symmetric in time, so we 

constrain φ as in [19]. This formulation is a modification of the Jacobian-weighted mean of 

Eqn (4) where the population observations are averaged at an intermediate point determined 

by the diffeomorphic trajectory rather than the estimation of a population’s centroid. Here, 

φ0
a, b is the diffeomorphism computed from the time-varying velocity field vt parameterizing 

(3) from time t = a to time t = b for the mapping of I0 to I1 (φ1
a, b being the same for I1 to I0). 

The algorithm to upsample a sparse image stack with slice thickness R by some factor S is 

then given by:
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Algorithm 1 Algorithm for upsampling image stack

Given a stack of M image sections H = H1, H2, H3, …, HM and slice thickness R:

for i = 1 to M − 1 do

 Set observation 1: I0 = Hi

 Set observation 2: I1 = Hi+1

 Compute 2D LDDMM mapping φ0 from I0 to I1 and φ1 from I0 to I1.

 for s = 1 to S do

  Compute weighted mean image Ir, where r = sR
S .

 end for

end for

For each pair of observed sections Ii and Ii+1, convergence of the trajectory estimation step 

(φ0, φ1) is determined by a minimum energy reduction of less than 0.01% between LDDMM 

iterations (approximately 500 iterations for each direction, with a runtime of about 20 

seconds using a custom GPU-accelerated software pipeline running on an Nvidia 

RTX2080).

D. Evaluation

We apply the proposed algorithm to our mouse cardiac MR dataset and evaluate the 

accuracy of our estimations by excluding an interior short-axis slice and comparing our 

estimate with the excluded ground truth. For example, in a heart with 10 slice acquisitions 

along the left ventricle, we estimated slice 2 using only slice 1 and 3, then we estimated slice 

3 using only slice 2 and 4, and so on. In total, the dataset contains 68 such unique triplets of 

neighboring slices. We evaluate the mean squared error of the grayscale image produced by 

our estimated with the ground truth image and we compare against traditional linear 

interpolation. An independent expert has also hand-segmented all estimated slices from end-

systole and end-diastole time points for both the proposed method and linear interpolation, 

and we report the resulting segmentation Dice [20], [21] score against the ground truth.

III. RESULTS AND DISCUSSION

As a first step, we apply the proposed algorithm to the 0.1307 mm × 0.1307 mm × 0.8 mm 

short-axis image stack in order to upsample the volume by a factor of six along the imaging 

axis to 0.1307 mm × 0.1307 mm × 0.1333 mm. The resulting upsampled volume is resliced 

along the given acquisition’s long-axis image plane and compared against the ground truth 

acquisition alongside other interpolation methods in Figure 2. Because corresponding long-

axis acquisitions were not available for all subjects, we present comparison of long-axis 

reslicing for visual comparison only. Nearest-neighbor interpolation produces the expected 

step artifacts, and while linear interpolation somewhat smooths these artifacts, they are still 

evident in panel b of Figure 2. Unlike linear interpolation, the proposed model is capable of 

modeling physical fluid-like deformations, producing the profile most similar to the ground 

truth.
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To quantitatively evaluate the proposed method, we perform the short-axis estimation 

experiment described above in II.D for the end-systole and end-diastole time points for all 

subjects. A sample series of three acquired short-axis end-systole sections from a single 

subject are shown in Figure 3.

For every triplet of sections, the central section is hidden from the proposed model and 

reconstructed using its neighbors. Figure 4 shows an example of this process in which 

section 7 from Figure 3 is estimated by both linear interpolation and the proposed 

diffeomorphic interpolation method. Here, the power of the proposed model becomes 

evident: obvious ghosting artifacts are present in the linearly interpolated image while the 

proposed model produces a coherent image with left ventricular boundaries that closely 

match the ground truth image. Beyond the heart itself, the proposed model clearly produces 

more accurate estimations in regions with thin features, such as the ventral chest surface on 

the right side of the panels of Figure 4.

We first quantify the accuracy of our estimation by comparing the absolute intensity 

difference between our estimated images and the ground truth. Figure 5 shows the difference 

image for the estimation of section 7 from Figure 4 for both linear interpolation and the 

proposed model. The difference image shows a close estimate of the ground truth image 

intensity by the proposed method. Averaged over the entire dataset, we report a mean 

percent reduction in absolute intensity error of 12.7% ± 3.26%. We also report that 100% of 

slices estimated by the proposed model showed lower absolute intensity error compared to 

linear interpolation. We performed a one-sided Wilcoxon rank-sum test between the sets of 

individual error values for slice between the two methods and report a p-value of 1.31 × 
10−8, indicating that our method produces significantly more accurate intensity estimates.

In addition to comparing raw intensity, we evaluate our model by comparing manual 

segmentations of estimated slices by an independent expert against segmentations of the 

ground truth by the same expert. We evaluate the Dice coefficient of each dense 2D 

segmentation and observe marked improvement in estimation of the LV boundary when 

comparing our model (mean Dice score across slices of 0.87 ± 0.085) to linear interpolation 

(mean Dice score across slices of 0.79 ± 0.11). We again performed a Wilcoxon rank-sum 

test between the two groups of Dice scores and report a p-value of 1.53 × 10−4, indicating 

significantly improved accuracy in the left ventricular region using the proposed method. 

Sample segmentations for each model overlayed with the ground truth segmentations are 

shown in Figure 6. The right column of this figure shows close alignment between the 

ground truth (green) and proposed model (red), whereas linear interpolation (blue) is 

generally less accurate.

Alongside improved upsampling accuracy, an additional benefit of the proposed 

deformation-based model is its ability to carry information associated to the sparse 

observations into the upsampled region. For instance, we can apply each section’s computed 

Jacobian-weighted averaging to the associated sparse segmentations to produce a densely 

segmented and upsampled volume; this is not possible by linear or nearest-neighbor 

interpolation. Figure 7 shows an example of this effect on a long-axis reslicing of an 

upsampled short-axis stack.
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IV. CONCLUSIONS

We presented and evaluated a method for estimating 3D dense reconstructions of left 

ventricular myocardium using diffeomorphic shape interpolation algorithm. Unlike other 

methods, the proposed approach does not require model training or identification of 

correspondences, and the Jacobian weighted population-mean model is a more accurate 

averaging method than other models that sample single geodesics or perform unweighted 

population averaging. We also show other applications of the method to the data such as 

upsampling of sparse segmentations into smooth volumes for downstream processing.
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Fig. 1. 
Sample images from the mouse cardiac MR dataset. a) A long axis section interposed with 

short axis sections. b) Short-axis cine with manual segmentation. c) Short-axis image stack 

resliced along the long axis at native resolution. d) True long-axis cine image.
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Fig. 2. 
Long axis view through left ventricle, resampled from several interpolation methods applied 

to short-axis image stack alongside ground truth long axis image. a) Nearest neighbor 

interpolation applied to short-axis stack. b) Linear interpolation applied to short-axis stack. 

c) Our proposed shape-based interpolation applied to short-axis stack. d) Ground truth long 

axis scan.
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Fig. 3. 
Sample of three consecutive 0.8 mm thickness short-axis sections acquired at end-systole 

from a single subject. Sections move closer to the apex as section # increases.
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Fig. 4. 
Estimation of an intermediate section (section 7 from Figure 3) by linear interpolation (left) 

and the proposed model (center). The ground truth is shown on the right. The images are 

zoomed to the left ventricle for clarity.
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Fig. 5. 
Sample absolute intensity difference image zoomed to the left ventricle between a) ground 

truth slice and linearly interpolated estimation, and b) ground truth slice and 

diffeomorphically interpolated estimation. Colorbar has units of % mean intensity of the 

ground truth image.
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Fig. 6. 
Sample manual segmentations of linearly interpolated estimations (left, blue), 

diffeomorphically interpolated estimations (left center, red), ground truth (right center, 

green), and all three overlayed on the ground truth (right).
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Fig. 7. 
Comparison of sparse segmentations upsampled by a&b) the proposed model, c&d) nearest 

neighbor interpolation, e&f) linear interpolation, alongside upsampled grayscale intensity 

images. Segmentation by linear and nearest neighbor methods are identical in the case of 

50% thresholding.
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