Abstract:
Advancements in wireless sensor networks (WSN) technology and miniaturization of wearable sensors have enabled long-term continuous pervasive biomedical signal monitoring...Show MoreMetadata
Abstract:
Advancements in wireless sensor networks (WSN) technology and miniaturization of wearable sensors have enabled long-term continuous pervasive biomedical signal monitoring. Wrist-worn photoplethysmography (PPG) sensors have gained popularity given their form factor. However the signal quality suffers due to motion artifacts when used in ambulatory settings, making vital parameter estimation a challenging task. In this paper, we present a novel deep learning framework, BioTranslator, for computing the instantaneous heart rate (IHR), using wrist-worn PPG signals collected during physical activity. Using one-dimensional Convolution-Deconvolution Network, we translate a single channel PPG signal to an electrocardiogram(ECG)-like time series signal, from which relevant R-peak information can be inferred enabling IHR measures. The proposed network configuration was evaluated on 12 subjects of the TROIKA dataset, involved in physical activity. The proposed network identifies 92.8% of R-peaks, besides achieving a mean absolute error of 51±6.3ms with respect to reference ECG-derived IHR.
Published in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 23-27 July 2019
Date Added to IEEE Xplore: 07 October 2019
ISBN Information:
ISSN Information:
PubMed ID: 31946805