Abstract:
Thermal comfort has an important impact on human health and work efficiency, which has attracted more attention in recent years. Although electroencephalogram (EEG) has b...Show MoreMetadata
Abstract:
Thermal comfort has an important impact on human health and work efficiency, which has attracted more attention in recent years. Although electroencephalogram (EEG) has been used to evaluate thermal comfort, it has not been reported to be used in controlling the air conditioner. This paper attempted to construct a passive EEG based brain-computer interface (BCI) system to regulate the room temperature. During the experiment, EEG signals in two conditions, thermal comfort and hot discomfort, were collected to build a discriminant model. And then, an online experiment was conducted to verify the thermal comfort effect of the BCI temperature control. Results showed that all the five subjects could obtain a better thermal sensation under the BCI control in an overheated environment. This study indicated the feasibility of indoor temperature control technology based on physiological signals. It can provide a new way to obtain personalized thermal comfort.
Published in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 23-27 July 2019
Date Added to IEEE Xplore: 07 October 2019
ISBN Information:
ISSN Information:
PubMed ID: 31946553