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Abstract

The advent of portable cardiac monitoring devices has enabled real-time analysis of cardiac 

signals. These devices can be used to develop algorithms for real-time detection of dangerous 

heart rhythms such as ventricular arrhythmias. This paper presents a Markov model based 

algorithm for real-time detection of ventricular tachycardia, ventricular flutter, and ventricular 

fibrillation episodes. The algorithm does not rely on any noise removal pre-processing or peak 

annotation of the original signal. When evaluated using ECG signals from three publicly available 

databases, the model resulted in an AUC of 0.96 and F1-score of 0.91 for 5-second long signals 

and an AUC of 0.97 and F1-score of 0.93 for 2-second long signals.
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I. INTRODUCTION

Ventricular arrhythmia (VA) encompasses a spectrum of abnormal heart rhythms originating 

from the ventricles, the heart’s lower chambers. These arrhythmias have rates of over 100 

beats per minute [1]. Types of VA include ventricular tachycardia (VT), ventricular flutter 

(VFlutter), and ventricular fibrillation (VF). Serious ventricular arrhythmia is associated 

with ischemic heart disease and can contribute to sudden cardiac death (SCD) events. These 

events constitute approximately 230,000 to 350,000 deaths annually in the United States and 

50% of all cardiovascular deaths [2], [3]. Approximately half of SCD events can be 

attributed to VT or VF [4]. Therefore, monitoring and detecting VT and VF is critical for the 

prevention of SCD events.
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Portable cardiac monitoring devices now exist that are capable of producing continuous, 

real-time cardiac signals [5]. Algorithms implemented on these devices could enable real-

time detection of ventricular arrhythmia. Development of these algorithms calls for the 

classification of heart rhythms and arrhythmia detection based on these classifications.

Past algorithms developed for classification and detection of VA have utilized time domain 

techniques [6], information theory [7], [8], the Hilbert transform [9], [10], spectral 

parameters [11], and machine learning [12], [13], [14], [15], [16]. Machine learning 

techniques include VF filter “leakage” combined with a support vector machine (SVM) [12], 

[13], one-dimensional convolutional neural networks (CNN) [14], and an 11-layer CNN 

with 10-fold cross validation [15]. Features used during machine learning include threshold 

crossing sample count, sample entropy, and features extracted via variational mode 

decomposition [17]. Most of these algorithms are based on traditional machine learning 

methods that implement pre-processing, feature extraction, and feature selection, followed 

by training a classifier. Their performance often depends on error-prone techniques that 

remove noisy signals through peak detection and pre-processing. A previous version of the 

proposed algorithm has shown strong results for the detection and prediction of atrial 

fibrillation episodes [16]. Our proposed algorithm can also be adapted for real-time 

detection within an in-vehicle setting.

This paper first presents the Markov Chain Automatically Generated States (MCGENS) 

algorithm for the detection of ventricular tachycardia, ventricular flutter, and ventricular 

fibrillation. The algorithm does not depend on R peak detection algorithms or any pre-

processing steps for noise removal, which are handled instead during signal encoding. Next, 

the algorithm is tested on patients from three data sets using 5-fold cross validation over 

cohorts partitioned at the patient level, resulting in an AUC of 0.96 and F1-score of 0.91 for 

5-second long signals and an AUC of 0.97 and F1-score of 0.93 for 2-second long signals. 

Finally, the results and methods are discussed and compared with existing methods.

II. DATA

Three publicly available data sets with ventricular arrhythmia annotations were used in the 

evaluation of the proposed method. As all three databases have been examined by other 

algorithms, the proposed algorithm can be directly compared with the performance of 

existing algorithms.

The MIT-BIH Arrhythmia Database (mitdb) contains 48 half-hour excerpts of two-channel 

ambulatory ECG recordings obtained from 47 human subjects[18]. The second database, the 

MIT-BIH Malignant Ventricular Arrhythmia Database (vfdb), contains 22 half-hour ECG 

recordings of subjects who experienced episodes of sustained VT, VFlutter, and VF [18]. 

Lastly, the Creighton University Ventricular Tachycardia Database (cudb) includes 35 8-

minute long ECG recordings of human subjects who experienced episodes of sustained VT, 

ventricular flutter, or VF [19]. The recordings from mitdb are sampled at 360 Hz, while 

those from vfdb and cudb are sampled at 250 Hz.
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III. METHODS

A Markov chain algorithm was developed for the classification and detection of the VA 

intervals of interest. The first part of this section provides details on the MCGENS 

algorithm. The second part describes the setup of the experiments and the data partitioning 

into training set, validation set, and testing set.

A. MCGENS Algorithm

Unlike more traditional Markov chain based models, the proposed MCGENS model 

performs computation via frequency analysis. The transition probabilities of the Markov 

chains and their underlying network structure, including the state space, were computed 

using this frequency analysis method. Consequently, this model was more adaptive and more 

faithfully reflected patterns within the signals.

Figure 1 provides an overview of the MCGENS algorithm. Essentially, two Markov models, 

MVA and MNon-VA, were learned from training data sets for VA and non-VA signals, 

respectively. ECGs from the training set were encoded and used to create a Markov chain, as 

shown in Figure 2. A new ECG signal, encoded as a discrete signal Q, was then assigned to 

the class ‘VA’ or ‘Non-VA’ by applying the two trained Markov models and then comparing 

the resulting conditional probabilities ℙ Q ∣ MVA  and ℙ Q ∣ MNon‐VA . The algorithms for 

encoding the data and creating a Markov chain proceed as follows:

1) Encoding the ECG as a word distribution: Raw ECG signals were encoded into 

ternary word distributions through six steps. A ternary alphabet was chosen to represent 

three signal components: R-peak like dominant waves, minor peaks like T and P waves, and 

non-peak portions of the signal.

a. Subtract moving average: The average of the signal over (t − 0.15, t + 0.15) time 

intervals was computed as

fav(t) = 1
0.3∫t − .15

t + .15
f0(x)dx (1)

and then subtracted from the original signal f0

f(t) = f0(t) − fav(t) . (2)

b. Peak filter: The only peaks retained were those with heights that were positive 

relative to the end points of the intervals (t − 0.1, t + 0.1), computed as

f(t) = max 0, f(t) − max f(t − 0.1), f(t + 0.1) . (3)

c. Discretization: The potential state space of the relevant Markov chains was 

reduced to a finite space via

xk = max f(t) ∣ 0.05 × (k − 1) ≤ t ≤ 0.05 × k . (4)
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d. Normalization: The signal was normalized by dividing by the local absolute 

maximum.

e. Soft-thresholding: A soft-thresholding procedure was applied to systematically 

convert the signal into a sequence of probability vectors. The output of the soft-

thresholding step was a sequence of 3-dimensional probability vectors, each of 

which is of the form

ℙ(R‐peak)
ℙ(TP‐peak)

ℙ(Non‐peak)
.

In this matrix, ‘R-peak’ represents dominant R-wave like peaks and ‘TP-peak’ 

represents smaller waves more likely to be T or P waves. The two soft-

thresholding functions, ϕR(x) = ℙ(R‐peak) and ϕTP(x) = ℙ(TP‐peak) were defined 

as follows:

ϕR(x) =
1 if x > .8
5x − 3 if .6 ≤ x ≤ .8
0 if x < .6

, (5)

and

ϕTP(x) = 1 − maxt‐local ϕR(x) × ϕTP
0 (x), (6)

where maxt-local denotes the maximum in the relevant (i.e. kth) window of the 

signal where xk is defined and

ϕTP
0 (x) =

1 if x > .05
40x − 1 if .025 ≤ x ≤ .05
0 if 0 < x < .025

. (7)

2) Create Markov Chain: The states of the Markov chain consisted of all the words 

generated by the encoding steps with frequency of occurrence above a fixed threshold. Each 

state could transition into three possible states depending on the next letter to appear in the 

sequence. The new state was the largest suffix. The frequency thresholds and time interval 

for encoding were parameters that could be tuned on the training data sets.

B. Data Partitioning

The vfdb and cudb databases are sampled at 250 Hz, while the mitdb database is sampled at 

360 Hz. Therefore, signals from mitdb were first re-sampled to 250 Hz. VA episodes 

including VT, ventricular flutter, and VF were extracted from the re-sampled signals 

according to the ground-truth annotations. VA episodes from a total of 28 patients were 

extracted. The signals from 22 (80%) patients were included in the training data set and the 

remaining 6 patients were grouped into the testing data set.
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Signals were segmented into both 5-second and 2-second long episodes. A total of 1409 5-

second episodes were in the training data set and 261 episodes were in the testing data set. 

For the 2-second analysis, a total of 3667 episodes were in the training data set and 662 

episodes were in the testing dataset. Non-VA data was partitioned in a similar way to ensure 

that the testing data set had a patient population disjoint from the training data set.

Five-fold cross validation was performed at the patient level for parameter tuning and to 

prevent over-fitting. The entire training data set was equally partitioned into 5 parts on the 

patient level. The first 4 parts were used as training data for generating the Markov models 

and the last part was the validation data set. This process was repeated five times. Average 

results for classification from all five experiments were used to assess the performance. The 

sensitivity, specificity, F1-score, and area under the ROC curve (AUC) were computed based 

on the training data set. The Markov model with the highest AUC over the training data set 

was then applied to the testing data set to obtain the final results.

IV. Results

Performance was evaluated using 5-fold cross validation. Within the training data set, the 

best result had an AUC of 0.92 ± 0.05 and F1 score of 0.89 ± 0.03 for 5-second long 

episodes and AUC of 0.93 ± 0.03 and F1 score of 0.88 ± 0.04 for 2-second long episodes.

The parameters in the model with highest AUC in the training data were then applied to the 

testing data set. This testing set had a patient cohort separate from the training data.

When evaluated over the testing data set, the proposed algorithm correctly identified 243 of 

261 (0.93 sensitivity) VA episodes and 227 of 261 (0.87 specificity) non-VA episodes for 5-

second long signals. The AUC was 0.96 and the F1-score was 0.91. For two-second long 

signals, the algorithm correctly identified 625 of 662 (0.94 sensitivity) VA episodes and 600 

of 662 (0.91 specificity) non-VA episodes (Table I) with an AUC of 0.97 and an F1-score of 

0.93 (Figure 3).

V. Discussion

The presented Markov model did not require any pre-processing or peak annotation of the 

signals. It was able to detect 5-second long VA episodes with a high AUC of 0.96 and F1-

score of 0.91, and with an AUC of 0.97 and F1-score of 0.93 using 2-second long signals. 

Table II provides a performance comparison between our algorithm and other algorithms. 

Note that the precise conditions and set-up of these studies are not exactly the same.

There are multiple advantages of the proposed method over traditional feature extraction 

with machine learning algorithm based approaches. First, the proposed algorithm did not 

rely on the efficacy of any pre-processing algorithms to remove noise and baseline 

wandering. Instead, the encoding algorithm uses filters and normalizes the signals. Most pre-

processing algorithms require prior knowledge of noisy signals to build the best thresholds 

for filtering purpose. Our algorithm, by utilizing a word distribution algorithm, is more 

adaptive to different types of noisy signals. The second advantage was that the proposed 

algorithm did not require usage of an ECG peak annotation algorithm. Thirdly, this 
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algorithm did not need extensive prior knowledge of the signals in order to build and extract 

features. Furthermore, even though recent novel algorithms using CNNs do not require pre-

processing or feature extraction either, they still require longer training times and larger 

computational resources. Finally, the proposed model was flexible, robust, and adaptable to 

other types of arrhythmia like atrial fibrillation [16] and supraventricular tachycardia. It has 

potential applications to portable devices that could perform detection in real-time.

One limitation of the model was that it required a large number of good quality annotated 

signals for training. However, for severe types of arrhythmia with low prevalence such as 

VF, the number of annotated signals are limited.

Future work will utilize the proposed method to predict the onset of VA events several 

minutes in advance with real-time data from portable ECG devices.

VI. Conclusion

Ventricular arrhythmias, which originate from the ventricles, are a dangerous form of 

abnormal heart rhythm. This study applied a Markov model based approach to the detection 

of VA (including VT, VF and VFlutter) in 5-second long ECG signals and in 2-second long 

ECG signals. The proposed approach did not require peak annotation algorithms, nor any 

noise removal pre-processing of the signals. The proposed algorithm yielded an AUC of 

0.96 and F1 of 0.91 for 5-second long signals and 0.97 AUC and F1 of 0.93 for 2-second 

long signals.
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Fig. 1: 
Overview of MCGENS
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Fig. 2: 
Training Scheme
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Fig. 3: 
AUC-ROC, Testing Data (2 Seconds)
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TABLE I:

Confusion Matrix for VA Detection Markov Model

Annotation 5 seconds Annotation 2 Seconds

Prediction VA Non-VA Total VA Non-VA Total

VA 243 34 277 625 62 687

Non-VA 18 227 245 37 600 637

Total 261 261 552 662 662 1324
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TABLE II:

Comparison to Other Methods

Author, (Year) Data Classification Length(s) Algorithm Performance

Jekova, 2004 AHAVF vfdb Non-shockable vs. Shockable (VT >180 
bpm + VF) 10 preprocess, criteria based, 

bandpass digital filtration
Sen=0.96
Spec=0.94

Alonso, 2014
mitbih
cudb
vfdb

VF vs. Non-VF 8 preprocess, feature extraction, 
SVM

Sen=0.92
Spcc=0.97
AUC=0.987

Tripathy, 2016
mitbih
cudb
vfdb

Non-shockable vs. Shockable (VF/VT) 5 variational mode decomposition, 
feature extraction, random forest

Sen=0.96
Spec=0.98
AUC=0.97

Acharya,2018
mitbih
cudb
vfdb

Non-shockable vs. Shockable (VFL, VT, 
VF) 2 CNN Sen=0.95

Spec=0.91

MCGENS
mitbih
cudb
vfdb

VFL/VT/VF vs. all others 2 Markov model (MCGENS)
Sen=0.94
Spec=0.91
AUC=0.97
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