
Multi-omic Pathway and Network Analysis to Identify Biomarkers 
for Hepatocellular Carcinoma

Megan E. Barefoot, Rency S. Varghese, Yuan Zhou, Cristina Di Poto, Alessia Ferrarini, 
Habtom W. Ressom
Georgetown University, Department of Oncology and Lombardi Comprehensive Cancer Center, 
Washington, DC, 20007.

Abstract

The threat of Hepatocellular Carcinoma (HCC) is a growing problem, with incidence rates 

anticipated to near double over the next two decades. The increasing burden makes discovery of 

novel diagnostic, prognostic, and therapeutic biomarkers distinguishing HCC from underlying 

cirrhosis a significant focus. In this study, we analyzed tissue and serum samples from 40 HCC 

cases and 25 patients with liver cirrhosis (CIRR) to better understand the mechanistic differences 

between HCC and CIRR. Through pathway and network analysis, we are able to take a systems 

biology approach to conduct multi-omic analysis of transcriptomic, glycoproteomic, and 

metabolomic data acquired through various platforms. As a result, we are able to identify the 

FXR/RXR Activation pathway as being represented by molecules spanning multiple molecular 

compartments in these samples. Specifically, serum metabolites deoxycholate and 

chenodeoxycholic acid and serum glycoproteins C4A/C4B, KNG1, and HPX are biomarker 

candidates identified from this analysis that are of interest for future targeted studies. These results 

demonstrate the integrative power of multi-omic analysis to prioritize clinically and biologically 

relevant biomarker candidates that can increase understanding of molecular mechanisms driving 

HCC and make an impact in patient care.
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I. INTRODUCTION

Hepatocellular Carcinoma (HCC) is the most common primary malignancy of the liver and 

the third leading cause of cancer deaths worldwide [1]. Liver resection and transplantation 

serve as the only potentially curative therapies. However, these options have limited 

applicability due to lack of resources and restriction to use in early stages [2]. HCC often 

develops from preliminary liver cirrhosis (CIRR) and therefore tends to be relatively 

asymptomatic during initial stages. [3]. As a result, HCC is an aggressive cancer and often 

diagnosed at advanced stages [4]. There is an unmet need to identify novel biomarkers for 

early detection of HCC due to low sensitivity (40–64%) and common misinterpretation of 

current diagnostic biomarkers for HCC, such as AFP values [5, 6]. Enhanced understanding 
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of mechanistic differences between HCC and CIRR is important to identify distinguishing 

features that may be of interest as potential biomarker candidates.

Many obstacles stand in the way of identifying alternative biomarkers for HCC. The process 

of finding actionable biomarkers is long and costly and potential candidates must be 

carefully selected. Statistical and bioinformatics analysis of patient derived omics data 

serves as the initial step in the biomarker discovery pipeline [7]. Recent technological 

advances in high-throughput sequencing have led to mass multi-omics data acquisition, 

heightening the difficulty of honing-in on relevant molecular targets. Multi-omics 

approaches increase reproducibility of results to put forth candidates with confidence for 

future targeted analysis to improve biomarker robustness. In this paper, we present 

transcriptomic, glycoproteomic, and metabolomic data acquired by analysis of liver tissues 

and serum from HCC and CIRR patients. Our aim is to use HCC as an example to present a 

multi-omic framework implementing pathway and network analysis to prioritize biologically 

and clinically meaningful molecular molecules.

II. METHODS

A. Samples Analyzed

Human liver tissue and serum from 65 adult patients recruited at MedStar Georgetown 

University Hospital through a protocol approved by the Georgetown IRB were included in 

this study and multi-omic analysis. All subjects provided informed consent forms and 

HIPAA authorization forms. Table I provides the characteristics of the 40 HCC cases and 25 

patients with CIRR whose samples were analyzed by various platforms to acquire multi-

omic data. Of the 40 HCC cases, 25% (10 HCC cases) have cirrhotic liver tissue adjacent to 

the tumor tissue.

B. Multi-omic Data

Transcriptomics (mRNA-seq and miRNA-seq): RNA samples extracted from the 65 

liver tissues were analyzed by Illumina HiSeq 4000 using 150 bp paired-end (PE150) form 

RNA-seq expression profiling. The mRNA-seq data contained an average of 33M reads per 

sample. The fastq files were imported into Partek Flow for quality assessment and mRNA-

seq data analysis. Alignment was performed using the spliced transcripts alignment to a 

reference (STAR) algorithm, which applies sequential maximum mappable seed search in 

uncompressed suffix arrays followed by seed clustering and stitching procedure. The aligned 

reads were quantified to the transcriptome through an Expectation Maximization (EM) 

method.

The 65 RNA samples described above were analyzed by Illumina NextSeq 550 platform 

using 2×150 bp paired-end (PE150) for miRNA-seq expression profiling. The miRNA-seq 

data acquired were analyzed using the QIAseq miRNA quantification data analysis software. 

The primary analysis of the data involved calculation of unique molecular index (UMI) and 

primary miRNA mapping. The secondary analysis involved calculating changes in miRNA 

expression based on UMI counts. For both mRNA-seq and miRNA-seq data, the TMM 

(trimmed mean of M-values) method was used for normalization.
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Glycoproteomics: Following the removal of high abundant proteins in sera from 65 

subjects using Agilent MARS Hu-14 HPLC column, we performed digestion, purification, 

and enrichment of glycoproteins by hydrazide chemistry. The samples were then analyzed 

using nanoUPLC coupled with Triple TOF 6600 Sciex system. The acquired LC-MS/MS 

data were analyzed using MaxQuant to select glycoproteins with statistically significant 

change in expression levels between HCC cases and CIRR controls [8].

Metabolomics (GC-MS and LC-MS): Two platforms (GC-TOF-MS and LC-QTOF-MS) 

were used for metabolomic analysis of tissue and serum samples from 65 subjects [9]. The 

tissues were homogenized, and metabolite extraction was performed in a single step. GC-

MS metabolites were acquired using Agilent 7890 GC coupled to LECO Pegasus HT, 

equipped with an electron ionization source and TOF analyzer. ChromaTOF with True 

Signal Deconvolution package was used for data pre-processing including, calculation, peak 

finding, deconvolution and identification. LECO’s Statistical Compare software tool was 

used for alignment of the GC-MS data. Spectral similarity searches against the Fiehn library 

were performed to determine the identities of the analytes.

LC-MS data were acquired by analysis of the metabolite extracts using Waters ACQUITY 

UPLC system coupled to a Synapt G2-Si QTOF-MS, operating in positive and negative 

polarity. Peak detection, alignment, and ion annotation were performed using XCMS [10, 

11] Putative metabolite identification was performed using MetaboQuest [http://

omicscraft.com/MetaboQuest/].

A. Statistical Analysis

To identify ions/molecules with significant changes in intensity levels, Wilcoxon rank-sum 

test was used within each omic dataset. The p-values were adjusted using the Benjamini-

Hochberg false discovery rate [12]. Each omic dataset was then filtered by identified 

molecules achieving FDR <0.05 significance value.

B. Network and Pathway Analysis

The multi-omic datasets were integrated through pathway and network analysis for selection 

of key molecules distinguishing HCC from CIRR. Fig. 1 depicts an overview of the multi-

omic analysis performed in this study. A series of exclusion criteria were used to filter 

identified molecules of interest for subsequent analysis. Selected molecules with FDR <0.05 

from each dataset were uploaded to Ingenuity Pathway Analysis (IPA, QIAGEN Inc.) for 

pathway and network analysis.

The microRNA Target Filter in IPA was used to pair statistically significant miRNA with 

mRNA targets using experimentally validated interactions from TarBase and miRecords and 

predicted interactions from TargetScan. Pairs were further filtered to include only reciprocal 

and dual-upregulated pairs that have been experimentally verified or predicted to associate 

with high confidence.
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III. RESULTS AND DISCUSSION

The multi-omic analysis performed in this study serves to emphasize a subset of inter-related 

transcriptomic, glycoproteomic, and metabolomic molecules that strongly distinguish HCC 

from CIRR across several physiological levels. Combining molecules that are strongly 

intertwined across multiple compartments increases reproducibility and provides a more 

effective and accurate means for cancer biomarker discovery. Table II presents the number of 

molecules from each omic dataset that were included for pathway analysis. The power of 

pathway analysis as a systems-biology approach lies in its ability to integrate individually 

processed omics data to offer improved biological insights [13].

Despite the benefit of multi-omic analysis, data from single-omics studies still have unique 

features that need to be taken into consideration separately during initial identification and 

prioritization steps. For instance, recent findings on the relevance of paired miRNA-mRNA 

regulation in HCC make combined analysis of individual mRNA and miRNA expression 

profiles of interest for more realistic application [14]. When considering the various 

scenarios for miRNA-mRNA regulation, only reciprocal or dual-upregulated pairs have been 

characterized as possible existing relationships [15]. Therefore, only significant mRNA with 

miRNA pairs of this nature were included for pathway analysis.

Additionally, unique prioritization was implemented on LC-MS-based metabolites included 

in this analysis. Besides the challenge due to a large number of peaks with unknown 

analytes, the presence of multiple putative ID’s per m/z is another significant barrier in 

untargeted LC-MS-based metabolomics studies [16]. To overcome this barrier, we used 

filters implemented in IPA to prioritize analytes of interest. For each m/z, only putative IDs 

having a unique PubChem CID and FDR <0.05 were considered. These ID’s were further 

filtered for exclusion of exogenous or non-mammalian chemicals/toxicants and other non-

metabolite classifications of PubChem CIDs. Higher prioritization was given to putative 

ID’s classified as endogenous mammalian metabolites that were involved in biological 

canonical pathways. Likewise, higher emphasis was placed on putative ID’s pulled into 

networks with other metabolites and other omics biomolecules from our data. This approach 

helped to narrow down putative LC-MS identification in need of future targeted 

quantification.

Canonical pathways derived from filtered molecules for each omic dataset were compared 

for overlap. The top 10 significant (p<0.05) pathways from each single-omics study are 

provided in Table III. In tissue, 104 significant (p<0.05) pathways were identified from 

transcriptomics data and compared to 31 significant pathways from metabolomics data. Of 

these, two pathways (FXR/RXR Activation and Sirtuin Signaling) were found to overlap 

across omics in tissue. In serum, 16 significant pathways (p<0.05) were identified from 

metabolomics data and compared to four significant pathways identified from 

glycoproteomics data. In serum only one pathway (FXR/RXR Activation) was found to 

overlap. Although circulating serum biomarkers are useful for non-invasive clinical 

diagnostic purposes, tissue omics data still offers insight into the molecular mechanisms 

contributing to HCC. For instance, five significant (p<0.05) pathways (FXR/RXR 

Activation, Sorbitol Degradation I, GABA Receptor Signaling, tRNA Charging, and 
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Tyrosine Degradation I) were found to overlap between serum and tissue metabolomics data. 

Combining omics data at a pathway level enables overlay between serum and tissue data to 

give weight to serum biomarkers that arise downstream from integral processes contributing 

to the pathogenesis of HCC.

FXR/RXR Activation was the only significant pathway depicted by all omics data in both 

tissue and serum when comparing HCC to CIRR. The molecules comprising this pathway 

from each level of multi-omic analysis in serum were studied in detail and integrated by 

network analysis as depicted in Fig. 2. The farnesoid X receptor (FXR) and retinoid X 

receptor (RXR) are nuclear receptors that play a key role in maintaining the homeostasis of 

liver metabolism [17]. FXR binds targets as a heterodimer with RXR and manages 

expression of genes involved in bile acid homeostasis, lipid and glucose metabolism, and 

inflammation [18]. Recently, downregulation of FXR in HCC has been linked to 

carcinogenesis through lack of negative feedback on NF-kB mediated inflammation and 

suppression of Wnt/β-catenin and JNK signaling pathways [19, 20, 17]. Decreased FXR 

expression has been associated with increased inflammation and proliferation, as well as 

dysregulated bile acid (BA) levels contributing to hepatotoxicity.

Molecules found to be involved in the FXR/RXR Activation pathway from our serum 

glycoproteomics and metabolomics data can be found listed below in Table IV. These 

molecules may be of interest for future targeted identification and biomarker validation. For 

serum glycoproteomics and metabolomics, molecules C4A/C4B, HPX, KNG1, 

chenodeoxycholic acid and deoxycholate are of particular interest. In our previous work, 

these highlighted glycopeptides and metabolites were also investigated as potential 

biomarkers for HCC [8, 21, 22]. In addition, several other molecules comprising the 

FXR/RXR Activation pathway were emphasized in our previous analysis as well, including 

taurocholic acid, ApoB, ApoA1, ApoCII/III, bile acid, and cAMP [23, 24].

These candidates for potential serum biomarkers differentiating HCC from CIRR are also 

well-established in the literature. For emphasized glycoproteins, KNG1 has been reported as 

a biomarker for sorafenib-resistant HCC [25]. KNG1 is overexpressed in HCC and plays a 

role in coagulation, inflammation, apoptosis, metastasis, and cholesterol metabolism [26]. 

Fucosylation patterns of HPX have been studied in the literature as well as potential liver-

specific N-glycan changes thought to distinguish HCC from CIRR [27, 28]. C4A has been 

reported as a potential biomarker in combination with CP, FGA, and PON1 for HCV-

infected alcoholic HCC patients [29]. C4A/C4B are glycoproteins involved in the classical 

or lectin pathways of the complement system. C4A/C4B upregulation is thought to 

contribute to HCC development through inflammatory and immunosuppressive mechanisms 

[30].

Dysregulated levels of BAs including metabolites chenodeoxycholic acid and deoxycholate 

have been implicated in the pathogenesis of HCC through mechanisms leading to increased 

inflammation [31]. Accrual of BAs can dysregulate mitochondrial function and cause 

hepatotoxicity and cell death through unrestrained formation of reactive oxygen species 

(ROS). Deoxycholate and Chenodeoxycholic acid have also been reported to induce 

oncogene c-myc [32]. Recent work has connected bile acid metabolism to liver cancer 
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immunosurveillance [33]. Specifically, metabolism of primary into secondary bile acids by 

commensal gut microbiota has been implicated in immunosuppression [33].

Taken as a whole, identifying multi-omic biomarker candidates inter-related at the pathway 

level can aid in reproducibility by increasing the likelihood of detection and applicability in 

the face of patient heterogeneity. For instance, the glycoproteomics data for this cohort was 

initially excluded due to limitations in feature identification. Excluding glycoproteomics, the 

FXR/RXR Activation pathway was still the only pathway to overlap across tissue and serum 

transcriptomics and metabolomics data. However, inclusion of significant glycoproteins that 

were identified only reinforced the relevance of this pathway to explain mechanistic 

differences between HCC and CIRR. Therefore, it was still possible to utilize the identified 

glycoproteins through this integrative multi-omic approach at a pathway level. Future work 

will focus on targeted identification of the molecules of interest presented in this study. 

Further, additional cohorts comparing HCC cases to cirrhotic controls can be analyzed using 

this multi-omic framework to better identify early diagnosis biomarker candidates. This can 

lead to improved diagnosis, while also providing insight into molecular mechanisms driving 

the pathogenesis of HCC.

IV. CONCLUSION

Early detection and diagnosis of HCC are essential to improve patient prognosis and make 

curative therapy through transplantation a possibility. There is a need to identify biomarkers 

with greater sensitivity and specificity compared to AFP that can distinguish between HCC 

and CIRR in diverse patient populations. In this study, an integrative analysis was conducted 

of transcriptomics, glycoproteomics, and metabolomics data acquired by analysis of tissue 

and serum samples from 40 HCC cases and 25 patients with CIRR. Through this analysis, 

we identified metabolites deoxycholate and chenodeoxycholic acid and glycoproteins C4A/

C4B, KNG1, and HPX in serum as potential biomarker candidates for future targeted study. 

These biomarker candidates identified through multi-omic pathway and network analysis are 

all part of the FXR/RXR Activation pathway and span across multiple tiers of biological 

data. We hypothesize that this heightens the clinical applicability and biological relevance of 

these serum molecules through being linked to molecular mechanisms driving the 

pathogenesis of HCC in tissue.
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Figure 1. 
Overview of multi-omic analysis.
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Figure 2. 
IPA network generated connecting serum glycoproteins and metabolites from our data with 

other interacting molecules comprising the FXR/RXR Activation pathway. Green molecules 

are downregulated and red molecules are upregulated.
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Characteristics of patient-derived samples

HCC (N=40) CIRR (N=25) p-value
a

Age Mean (SD) 61.2(12.2) 50.5(12.1) 0.0013

Gender Male 77.5% 72.0% 0.7683

White 40.0% 64.0%

Race Black 35.0% 32.0% 0.4073

Other 25.0% 4.0%

HCV Serology HCV Ab+ 40.0% 40.0% 1

HBs Ab+ 25.0% 48.0% 0.1015

HBV Serology HBs Ag+ 15.0% 4.0% 0.2232

Smoking Yes 62.5% 48.0% 0.3074

Alcohol Yes 45.0% 48.0% 1

Stage I 43.3%

HCC Stage Stage II 23.3%

Stage III or IV 33.3%

a
p -values were based on comparison between 40 HCC vs. 25 CIRR
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Serum molecules comprising the FXR RXR Activation Pathway

Serum Molecules

Metabolomics (GC-MS + LC-MS) Glycoproteomics

Chenodeoxycholic acid (CID:10133)* Complement Component (C4A/C4B)* (Uniprot:P0C0L4/P0C0L5)

Deoxycholate (CID:222528)* Hemopexin (HPX) (Uniprot:P02790)

D-glucose (CID:5793)* Kininogen-1 precursor (KNG1) (Uniprot:P01042)

xylitol (KEGG:D00061) Apolipoprotein B (APOB) (Uniprot:P04114)

Inter-alpha-trypsin Inhibitor Heavy Chain H4 (ITIH4) (Uniprot:Q14624)

Complement Component C9 (C9) (Uniprot:P02748)

Alpha-2-HS-Glycoprotein (AHSG) (Uniprot:P02765)

Clusterin (CLU) (Uniprot:P10909)

*
Molecules with FDR<0.05
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