Abstract:
Characterizing coordinated brain dynamics present in high-density neural recordings is critical for understanding the neurophysiology of healthy and pathological brain st...Show MoreMetadata
Abstract:
Characterizing coordinated brain dynamics present in high-density neural recordings is critical for understanding the neurophysiology of healthy and pathological brain states and to develop principled strategies for therapeutic interventions. In this research, we propose a new modeling framework called State Space Global Coherence (SSGC), which allows us to estimate neural synchrony across distributed brain activity with fine temporal resolution. In this modeling framework, the cross-spectral matrix of neural activity at a specific frequency is defined as a function of a dynamical state variable representing a measure of Global Coherence (GC); we then combine filter-smoother and Expectation-Maximization (EM) algorithms to estimate GC and the model parameters. We demonstrate a SSGC analysis in a 64-channel EEG recording of a human subject under general anesthesia and compare the modeling result with empirical measures of GC. We show that SSGC not only attains a finer time resolution but also provides more accurate estimation of GC.
Published in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 23-27 July 2019
Date Added to IEEE Xplore: 07 October 2019
ISBN Information:
ISSN Information:
PubMed ID: 31947169