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Abstract— The benefits of yoga have been studied in different
fields, from chronic health conditions to mental disorders, show-
ing that it can help to improve the overall health. In particular,
it has been proven that yoga also improves the autonomic
function. Heart rate variability (HRV) at rest is commonly
used as a non-invasive measure of autonomic regulation of
heart rate. Alternatively, pulse rate variability (PRV) has been
proposed as a surrogate of HRV. VoluMetrix has developed a
novel technology that captures venous waveforms via sensors on
the volar aspect of the wrist, called NIVAband. This study aims
to assess the effect of yoga in the autonomic nervous system by
analyzing the PRV obtained from the NIVA signal. Temporal
(statistics of the normal-to-normal intervals), spectral (power in
low and high frequency bands) and nonlinear (lagged Poincaré
Plot analysis) parameters are analyzed before and after a yoga
session in 20 healthy volunteers. The PRV analysis shows an
increase in parameters related to parasympathetic activity and
overall variability, and a decrease in parameters related to
sympathetic activity and mean heart rate. These results support
the beneficial effect of yoga in autonomic nervous system,
increasing the parasympathetic activity.

I. INTRODUCTION

Several studies have taken advantage of the peripheral

venous line in hospitalized patients, used primarily to allow

fluids and medications to be given directly into the circula-

tory system, to derive patients’ hemodynamic information.
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For example, continuous monitoring of intravascular volume

status permitted to detect early Stage 1 hemorrhage, while

other physiological parameters such as heart rate, SpO2 or

mean arterial pressure did not show any differences [1]. Also,

peripheral venous signal is able to not only give the volume

status of the patient, but also additional information such as

the respiratory rate and pulse rate [2].

This capability to offer valuable additional information

raises the interest of obtaining this signal in a non-invasive

way that will allow a continuous monitoring in daily life.

VoluMetrix is developing a new technology to capture venous

waveforms non-invasively via sensors on the volar aspect

of the wrist, called NIVAband. They propose Non-Invasive

Venous waveform Analysis (NIVA) to obtain information on

volume status, heart rate, and respiratory rate. In a previous

work, we validated the ability of NIVAband to provide a

measure of autonomic nervous system (ANS) via pulse rate

variability (PRV) analysis [3]. Results showed that high

frequency power was significantly higher in PRV analysis

from NIVA than in heart rate variability (HRV) from ECG,

suggesting that the NIVA signal may enhance measurement

of parasympathetic activity.

Some authors have studied the effect of yoga on the

autonomic function via HRV analysis, showing an increase

in parasympathetic activity [4], [5]. In this work, we want

to study the effect of yoga on PRV measured with the

NIVAband. We will obtain both temporal and spectral PRV

parameters before and after a yoga session in 20 volunteers.

In addition, we propose the Lagged Poincaré Plot (LPP)

for nonlinear analysis of PRV series. Significant differences

were already found in Poincaré Plot parameters, when they

were used together with time and frequency analyses of heart

rate variability, to study autonomic regulation in yogic and

control groups of subjects [5]. Moreover, LPP has been been

proven to be reliable for ultra-short time HRV analysis [6].

This is important since NIVA signal is very sensitive to

movement and other interferences, making it difficult to have

clean pulse rate series long enough for spectral analysis.

II. MATERIALS AND METHODS

A. Experimental Protocol and Acquisition Set-up

Twenty healthy subjects agreed to participate in the study

(written informed consent was obtained from each subject).

The study was performed in accordance with the Vanderbilt

University Medical Center and the University of Alabama-

Birmingham Institutional Review Boards. There were 5 men

and 15 women with an age range of (27-79, mean 52,
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median 56). The subjects reclined in savasana position with

the head and lower extremities supported with blankets.

Venous waveform signals were collected for 5-6 minutes,

before (pre-yoga) and after (post-yoga) a 2 hour “awareness

yoga” session, which is a slow restorative type of relaxation

yoga. Venous waveforms were collected using a piezoelectric

sensor (Mu rata, Nagaokakyo, Japan), placed on the volar

aspect of the wrist overlying the venous plexus, secured with

Coban elastic wrap (3M, Minneapolis, MN). The sensor was

interfaced with a prototype NIVA device (which contains

an amplifier, microcontroller, and flash memory, VoluMetrix,

Nashville, TN). The data was transferred to a computer as

.txt files using a USB cable and analyzed as described below.

B. Preprocessing and Pulse Detections

The NIVA signal is first low-pass filtered with a cut-

off frequency of 5 Hz to remove high frequency noise.

Frequencies below 0.3 Hz are also removed using a high-pass

filter to remove low oscillations such as the baseline wander.

Pulse detection is based on [7]: first, a linear-phase FIR

low-pass-differentiator (LPD) filter is applied to accentuate

the upslopes of the pulses; and then an adaptative threshold

is applied to detect the peaks in the LPD filtered signal,

which represents the points with maximum slope in the NIVA

signal. These k-th pulse detections are denoted as nk.

From nk, the pulse interval series are obtained as d(k) =
nk − nk−1. Five recordings (two in pre-yoga and three in

post-yoga) had to be discarded due to low quality signal and

poor pulse detections: more than 80% of the pulse intervals

in these recordings were considered not normal, i. e., the

difference between that pulse interval and the previous one

was higher than 150 ms [8]. Therefore, only 15 out of 20

subjects were included for further analysis.

Pulses in NIVA signal are sometimes masked by noise,

yielding erroneous or missed pulse detections, which result

in outlier (or anomalous) pulse intervals. These outliers

are identifed, based on the algorithm in [9], and removed,

obtaining the normal-to-normal (NN) intervals [10]. Figure 1

shows an example of pulses detection with an incidence and

its correction (upper panel), which also reflects in the NN

interval series (lower panel).

C. Pulse Rate Variability Parameters

Temporal Domain: For temporal domain analysis, PRV

parameters are derived from the NN intervals [10]. Three

parameters were considered: the standard deviation of the

pulse intervals (SDNN ), the square root of the mean

squared differences of successive pulse intervals (RMSSD)

and the mean pulse interval time (NN ).

Frequency Domain: For frequency domain analysis, PRV

parameters are derived from the modulating signal m(n),
which is assumed to have information about ANS activity,

and is computed and described below. The instantaneous

pulse rate signal, dPR(n), is derived from d(k), following a

method based on the time-varying integral pulse frequency

modulation (TVIPFM) model, and resampled at 4 Hz. This

signal is high-pass filtered to remove the mean heart rate

205 206 207 208 209 210 211 212 213 214 215
-0.1

-0.05

0

0.05

0.1

N
IV

A
 (

a
.u

.)

205 206 207 208 209 210 211 212 213 214 215

Time (s)

0.2

0.4

0.6

0.8

1

N
N

 (
s
)

Fig. 1. Example of the NIVA signal (upper panel) with pulse detections (red
circles) including an incidence (black cross). Corresponding pulse interval
series (lower panel) with outlier intervals removed.

tendency dPRM(n) (very low frequency components) and

corrected to obtain the pulse rate modulating signal m(n):
m(n) = (dPR(n)− dPRM(n))/dPRM(n) [11], [9].

Although the method in [9] takes into account the possible

presence of ectopic beats, false or missed detections, if

there are too many outliers following each other, the gap

is too long and the estimated m(n) can introduce artificial

oscillations. Therefore, we do not take into account these

gaps if they are longer than 3 seconds. In order to have

a reliable frequency domain analysis, we only considered

segments no shorter than 90 seconds without gaps longer

than 3 seconds. Only 9 subjects had both pre- and post-yoga

recordings suitable for frequency domain analysis.

The power spectral density (PSD) of m(n) is computed

using the Welch periodogram, with 60 s windows 10 s over-

lapped. The powers in the LF and HF bands are computed

integrating the power spectrum in the corresponding bands:

PLF from 0.04 to 0.15 Hz, and PHF from 0.15 to 0.4 Hz. The

normalized LF power is obtained as PLFn = PLF/(PLF + PHF).

Lagged Poincaré Plot: The Poincaré Plot is a graphical

representation of interbeat dynamics, inspired by the return

map theory to describe the phase space trajectories [12]. In

the standard version, the Poincaré Plot is a scatterplot where

each pulse interval d(k) is plotted against the immediately

previous pulse interval d(k− 1). In the lagged Poincaré Plot

(LPP) technique, a lag l is introduced and scatterplots are

made by the points with coordinates d(k) and d(k − l).
Previous studies investigated a range of lag values equals

to 1 ≤ l ≤ 10.

The most used quantitative approach to describe the shape

of LPP is the ellipse fitting technique [13]. Following this

methodology, the LPP is turned 45◦ clockwise and the

two standard deviations of the points around the vertical

(SD1) and horizontal (SD2) axes are computed. SD1 is a

measure of the short-term variability of pulse interval series,

whereas SD2 describes long-term dynamics. In this study

373

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on February 23,2021 at 12:10:49 UTC from IEEE Xplore.  Restrictions apply. 



we investigated the two standard deviations, SD1 and SD2,

together with their ratio SD12 = SD1/SD2.

We computed the values of SD1, SD2, and SD12 in

50% overlapped windows lasting 35 sec, both in pre-yoga

and post-yoga NN intervals. The standard range 1 ≤ l ≤

10 for the lag value was considered in the LPP analyses.

The reliability of LPP parameters calculated using the ellipse

fitting technique in 35 sec windows was already investigated

in our previous studies, through synthetic and real data [6],

[14].

Considering each LPP parameter (SD1, SD2, and SD12)

and each lag l, we calculated the median values among the

35 sec windows, in the pre-yoga session and in the post-yoga

session. For each subject, we obtained two median values of

each LPP parameter and each lag corresponding to pre-yoga

and post-yoga, respectively.

D. Statistical analysis

A paired Wilcoxon non-parametric statistical test was ap-

plied to all PRV parameters to study the differences between

pre- and post-yoga sessions. Analysis of temporal (SDNN ,

RMSSD, NN ) and LLP parameters (SD1, SD2, SD12,

for each lag) included 15 subjects, while analysis of spectral

parameters (PLFn and PHF) included 9 subjects. The difference

is considered to be significantly different from zero when p

< 0.05.

III. RESULTS

Figure 2 shows an example of the NN interval series for

pre- and post-yoga sessions, as well as their corresponding

PSD. An overall increase in power is observed after the yoga

session.

0 50 100 150 200 250
0.7

0.8

0.9

1

1.1

N
N

 (
s
)

PRE

0 50 100 150 200 250

Time (s)

0.7

0.8

0.9

1

1.1

N
N

 (
s
)

POST

0 0.5

Frequency (Hz)

0

0.002

0.004

0.006

0.008

0.01

0.012

PSD

PRE

POST

Fig. 2. Example of NN interval series for pre- and post-yoga sessions (left
panels) and their corresponding power spectral densities (right panel).

Temporal PRV parameters are shown in Figure 3: there

is an increase in NN (which translates to a decrease in

the mean heart rate), SDNN and RMSSD, but it is only

statistically significant in SDNN . Spectral PRV parameters

are shown in Figure 4: there is a decrease in PLFn and an

increase in PHF, but both are not significant. The only LPP

parameter which was found to be statistically different was

the ratio SD12 (lags 5 and 7), shown in Figure 4: there is

a significative increase after yoga.
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Fig. 3. Temporal PRV parameters in pre- and post-yoga recordings. *
denotes significant differences (p<0.05).
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Fig. 4. Spectral and LLP (SD12, lags 5 and 7) PRV parameters in pre-
and post-yoga recordings. * denotes significant differences (p<0.05).

IV. DISCUSSION AND CONCLUSION

Several works have studied the role of yoga in the overall

health and a healthy lifestyle [15], [4], [5]. Also, yoga has

been proposed in severe mental illnesses: it was found a

reduction in general psychopathology ratings and an im-

provement in cognition and functioning in schizophrenic

patients, and a significant benefit in reducing the severity of

depressive symptoms [16]. In those studies which focus on

the autonomic function, they found an increase in parasym-

pathetic activity, a decrease in sympathetic activity and an

overall increase heart rate variability [4].

Our results agree with those found in the literature.

While most temporal and spectral parameters did not show
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significative differences, possibly due to the small size of

data, they indeed followed the same tendencies than in

other studies. We found an increase in NN (a decrease

in mean heart rate) which was also observed in previous

works. In most recordings, we found a tendency similar than

the example shown in Figure 2: in pre-yoga, the heart rate

decreases over time as the yoga session approaches, while in

post-yoga the heart rate increases over time. The increase in

SDNN is related with an overall increase of total variability,

while the increase in RMSSD is related to an increased

parasympathetic activity [10].

Spectral parameters also show similar results. There is a

decrease in LF power (in normalized units), an increase in

HF power and a decrease in the LF/HF ratio, which translates

to an increase in parasympathetic activity and a decrease in

both sympathetic activity and sympathovagal tone. Figure 2

also shows an increase in both LF and HF power, which

may be related to the increased parasympathetic activity

affecting both bands. Taking advantage of the capability

of the NIVAband to estimate the respiratory rate [3], we

found that it was located within the classic HF band (0.15

to 0.4 Hz) for all recordings, and no statistical differences

were found in PHF when centering the HF band around

respiratory rate compared to using the classic HF band. The

main limitation for spectral analysis is that NIVA signal is

very sensitive to movement artifacts, and only in 9 subjects

we could find segments longer than 90 s with no outliers

in the pulse interval series. We also repeated the statistical

test for temporal parameters with only these 9 subjects,

and the tendencies were the same, with SDNN being non

significative this time.

To overcome this limitation, we used other nonlinear

parameters which can be computed in very short time

windows, such as Lagged Poincaré Plot. Several previous

studies reported the correlation between lagged SD1 and

HF power, revealing its strong ability to detect increase in

vagal modulation [17]. According to recent literature, SD12
parameter relates to the nonlinear component of heartbeat

dynamics (especially for l = 5, 6) and an increase of

sympathetic activity was found to decrease its value [18].

Therefore, the increase in SD12 found in this work suggests

a decrease in sympathetic activity. We also repeated this

analysis using the whole recordings instead of the 35 s

windows, and we found similar statistical differences in

SD12 with lags 4 and 5.

In summary, we have shown that the NIVAband is able to

detect changes in autonomic function after a yoga session.

Similar to other heart rate variability studies, we have found

that yoga increases parasympathetic activity and decreases

the sympathovagal balance and the mean heart rate. There is

also an overall increase in the total variability. To overcome

the limitations found in the NIVA signal, which make dif-

ficult to analyze PRV parameters in the frequency domain,

we used temporal and non linear parameters, finding similar

results than with spectral parameters. Future studies will

focus on investigating the NIVA’s potential enhancement

of parasympathetic activity measurement compared to other

PPG devices.
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