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Deep Learning Techniques for Improving Digital Gait Segmentation
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Abstract— Wearable technology for the automatic detection
of gait events has recently gained growing interest, enabling
advanced analyses that were previously limited to specialist
centres and equipment (e.g., instrumented walkway). In this
study, we present a novel method based on dilated convolutions
for an accurate detection of gait events (initial and final
foot contacts) from wearable inertial sensors. A rich dataset
has been used to validate the method, featuring 71 people
with Parkinson’s disease (PD) and 67 healthy control subjects.
Multiple sensors have been considered, one located on the fifth
lumbar vertebrae and two on the ankles. The aims of this study
were: (i) to apply deep learning (DL) techniques on wearable
sensor data for gait segmentation and quantification in older
adults and in people with PD; (ii) to validate the proposed
technique for measuring gait against traditional gold standard
laboratory reference and a widely used algorithm based on
wavelet transforms (WT); (iii) to assess the performance of DL
methods in assessing high-level gait characteristics, with focus
on stride, stance and swing related features. The results showed
a high reliability of the proposed approach, which achieves
temporal errors considerably smaller than WT, in particular
for the detection of final contacts, with an inter-quartile range
below 70 ms in the worst case. This study showes encouraging
results, and paves the road for further research, addressing
the effectiveness and the generalization of data-driven learning
systems for accurate event detection in challenging conditions.

I. INTRODUCTION

Gait impairment is frequent among an aging population

and in particular in neurodegenerative diseases, e.g., the

Parkinson’s disease (PD). Gait performance is often consid-

ered as the sixth vital sign and it is emerging as a pow-

erful tool to identify surrogate markers of incipient disease

manifestation and disease progression [1]. Traditionally, gait

analysis has been carried out using specialised equipment

(most commonly instrumented walkways such as pressure-

sensor activated, e.g., GAITRite) [2], [3] which limits one

to work within specialised centres and gathering a relatively

small number of gait cycles [4]. Recent studies have shown

that wearable technology (e.g., inertial sensors) is a valid and

inexpensive alternative for quantifying digital gait outcomes

both in controlled and daily living environments [5], [6].

Many approaches have been developed for gait segmentation

(e.g., detection of initial and final contacts) and quantification
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of discrete gait characteristics, such as temporal, variability

and asymmetry metrics. Amongst these, reliability and accu-

racy can vary with respect to protocol (e.g., sensor position,

number of sensors) and method (peak detection, feature-

based, template-based methods, etc.) as features depend on

signal quality and, often, on the use of thresholds [7]–[9].

Recently, machine learning (ML) and deep learning (DL)

techniques have been utilised for automatic gait segmenta-

tion and pathology classification to support clinical decision

making, with good results [10]–[12]. Widely reported ML

models in these studies are support vector machine (SVM),

random forest, k-nearest neighbour, classification and re-

gression trees, neural networks, and logistic regression. An

advantage of DL over traditional ML techniques is their

good generalization property, which allows for an increased

reliability of signal segmentation, especially in unsupervised

settings. Moreover, DL techniques successfully deal with

high dimensionality and high variability data, which are

frequent with wearable technology, and make the extraction

of informative features in real-time possible (e.g., to help an-

ticipate falls), enabling continuous monitoring systems. Deep

convolutional neural networks (CNN) have proven to be an

effective method for the extraction of gait characteristics

from inertial sensor data, taking advantage of hierarchical

non-linear processing to learn high-level data representations

(representation learning) [13]. However, CNNs typically

follow a preceding gait segmentation phase, which is thus

critical to their effectiveness. This introduces the need for

further investigations (and optimisations) on the segmenta-

tion methods for gait data from wearable sensors, before the

clinical adoption of this technology.

Along these lines, the purpose of the present study is

to apply CNNs and validate their use for the accurate

segmentation of gait signals and the quantification of their

salient features. In particular, we aim at: (i) applying DL

techniques on wearable sensor data for gait segmentation

in older adults and in people with PD; (ii) validating DL

techniques for measuring gait against a widely used approach

including acquisition via a gold standard laboratory reference

(GAITRite), and data processing based on wavelet transform

(WT); (iii) evaluating the performance of the proposed DL

method in measuring high-level gait characteristics, with

focus on stride, stance and swing related features.

The paper is structured as follows. The dataset and the

proposed CNN-based algorithms are presented in Sec. II,

quantitative results are shown in Sec. III, and concluding

remarks are given in Sec. IV.
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II. METHODS

A. Data collection

A group of 71 PD patients (age: 68.95 ± 9.17 years,

MDS-UPDRS III: 40.63± 11.90) and 67 healthy control

subjects (HC, age 71.20± 6.49 years) were recruited from

the Incidence of Cognitive Impairment in Cohorts with

Longitudinal Evaluation-GAIT (ICICLE-GAIT) study. This

is a collaborative study with ICICLE-PD, an incident co-

hort study (Incidence of Cognitive Impairment in Cohorts

with Longitudinal Evaluation Parkinson’s disease) conducted

between June 2009 and December 2011 [14]. This study

was conducted according to the declaration of Helsinki and

had ethical approval from the Newcastle and North Tyneside

research ethics committee (REC reference: 09/H0906/82).

All participants signed an informed consent form prior to

testing. Each participant was asked to wear three Opal inertial

sensors (APDM, Inc., Portland, OR, USA): one on the fifth

lumbar vertebrae (L5) and two on the ankles. The Opal

sensors include a triaxial accelerometer, a gyroscope and a

magnetometer and record signal data at 128 Hz. Traditional

gait assessment was concurrently conducted as part of the

ICICLE-GAIT study using a 7.0 m long and 0.6 m wide

instrumented walkway (Platinum model GAITRite, software

version 4.5, CIR systems, NJ, USA). The instrumented

walkway had a spatial accuracy of 1.27 cm and a temporal

accuracy of about 4.17 ms (with a sampling frequency of

240 Hz), and was synchronised with the Opal sensors. Par-

ticipants were asked to walk at their preferred speed under

two conditions: (i) performing four intermittent straight line

walking trials (IW) over 10 m (the instrumented walkway

was placed at the centre of the 10 m [8]), and (ii) contin-

uously for 2 minutes on a 25 m oval circuit (CW), where

gait was measured only as they walked on the instrumented

walkway placed in the middle of the circuit to ensure gait

was captured at a steady speed [15]. PD participants who

were on medication were tested approximately one hour after

medication intake.

B. Data pre-processing

The Opal sensors, along with the raw inertial data, also

provide pre-computed orientation matrices. This information

is used in the first part of the data processing phase to project

the data onto a reference system that is fixed to the subject,

composed by the craniocaudal (longitudinal), anteroposterior

(sagittal) and mediolateral (frontal) axes. This process is key

to have a consistent reference system among all the measures,

and also to compensate for reasonable variations in the sensor

placement. Then, each signal is normalised to have zero

mean and unit average power. In this work, both triaxial

accelerometer and gyroscope data are considered, including

their magnitudes. Considering the three sensor locations, a

single sample is composed of 24 time series (4 accelerometer

data, accounting for x, y, z components and the signal’s

magnitude, and 4 gyroscope data for each sensor location),

which are processed by the model described in the following.

Fig. 1. Schematic diagram of the GSN architecture.

C. The proposed network architecture

A deep CNN, referred to as gait segmentation network

(GSN), has been developed and trained with the purpose of

improving traditional gait segmentation from inertial signals.

A schematic diagram of the proposed network architecture is

shown in Fig. 1. The network is structured into 6 consecutive

layers. First, the network receives an N-dimensional input

and it applies a convolution operation with C channels

(C = 128 has been considered for the presented results).

Then, a stack of five dilated convolutions, with C channels

each, follows. Incidentally, dilated convolutions have been

proved to be successful for the semantic segmentation of

images [16]. Therefore, here, we thought of extending their

capabilities for the detection of events in multi-dimensional

inertial signals.

The GSN structure is designed so that the output dimen-

sionality of each layer perfectly matches that of its input,

without performing data dimensionality reduction or expan-

sion. The dilation coefficient is doubled for each subsequent

convolution, so that the receptive field increases exponen-

tially with the number of layers. Each layer implements a

residual connection at the output, which allows for a faster

and improved convergence [17]. Where appropriate, a con-

volution with a 1×1 kernel is applied to the residual branch

for dimensionality matching. Batch normalisation is used

before each rectified linear unit (ReLU) activation function

to increase the training stability, and also for improved reg-

ularisation [18]. Four different outputs have been considered

for this study: two for the estimation of the right foot initial

contact (IC) and final contact (FC), and two for the left foot

IC and FC. A single output estimates the likelihood of the

corresponding input sample, given a specific gait event (e.g.,

the right foot IC). Fig. 2 shows the output corresponding

to each of the four considered gait events, with the dashed

red vertical lines representing the events detected by the

GAITRite standard reference. From visual inspection, it can

be noted that a higher probability (close to one) is output by

the network in the (time) neighbourhood of the correct target

event (as detected by the GAITRite) Incidentally, the exact

identification of the events entails the use of an additional

peak detection algorithm. Indeed, the events correspond to

the likelihood peaks (shown as green dashed vertical lines

in Fig. 2), with some constraints imposed to avoid multiple

peaks corresponding to the same event, and to make the



Fig. 2. A representative example of gait event identification using the
proposed GSN network (blue solid line) and the traditional gold standard
method (red dashed line).

number of false positives and negatives as small as possible.

It is worth noting that the newly proposed architecture is

capable of processing variable length input data, with no

restriction on the input size. Moreover, a single forward

pass allows to estimate all the events, which makes the

GSN model quite convenient to use in practical applications.

Finally, an adaptive moment optimizer has been used to

minimize a binary cross-entropy loss function [19].

III. RESULTS

The portion of data obtained by the GAITRite (both IW

and CW types) has been considered for the optimisation

process and for the evaluation of the results. A 5-fold cross

validation has been used to increase the reliability of the

results. The samples have been grouped so that the data

belonging to the same subject were either in the training or

in the validation set. The results are arranged in two sections:

the performance in event identification for gait segmentation

is analysed in Sec. III-A, while the capability of GSN to

extract high-level gait features is discussed in Sec. III-B.

A. Gait event identification

The first result concerns the gait segmentation perfor-

mance, i.e., the capability of the proposed method to cor-

rectly identify gait events (IC and FC for both feet). To

quantify the results we compared the estimated events with

those localized by the GAITRite reference system. Time

errors, i.e., the temporal distance between the estimated and

the GAITRite events, are shown in Fig. 3, where the boxes

represent the inter-quartile range (IQR), the red lines are the

median values, and the whiskers show the 5th and the 95th

percentile. Fig. 3 is intended to show the clear difference

in the variability of results obtained with the gold standard

reference and the proposed method, as well as the very good

match between outcomes from using a single sensor (on the

back). As a term of comparison, we also implemented one of

the most popular approaches for gait segmentation, proposed

Fig. 3. Statistical description of the time error for each gait event, initial
(IC) and final contacts (FC), both for HC and PD patients (left and right
foot events have been aggregated).

by McCamley et al., based on WT [20]. All the GSN errors

are considerably smaller than the WT based method, both in

terms of bias (by definition the median value of the error)

and IQR, especially for the FC events, for which the WT

approach often provides unreliable estimates (e.g., the IQR

of the WT based method for FC and IW trials is about 0.52 s,

compared to 0.04 s of GSN). As expected, GSN exhibits

slightly worse performance for the PD group, but still with an

IQR lower than 70 ms and a bias lower than 8 ms (absolute

value). No statistically significant difference can be observed

between IW and CW for all the methods, which are, then,

jointly considered in the following results. Even though the

simultaneous analysis of multiple sensors is one of the main

benefits of GSN, we also implemented a version of GSN

that was solely based on the L5 sensor (termed “GSN (L5

only)”), in order to provide a fair comparison with the WT

based method that solely uses that sensor. The results show

that GSN can achieve an almost optimal performance even

with a reduced source of data, extending the effectiveness of

GSN to a single sensor scenario, that is usually employed

in free-living acquisitions. These outcomes support the re-

liability of GSN as a segmentation and gait-related events

identification method, that typically represent the preliminary

(and critical) steps for further gait analysis.

B. High-level gait-related features

Given the above reliable segmentation and event detection

performance, next, high-level gait features, such as stride,

stance and swing, are estimated and compared with values

computed using the GAITRite [8]. To this end, we consider

the most common gait-related metrics, i.e., the average,

variability and asymmetry values, obtained during an entire

walking session [8]. Results are summarized in Tab. I. Esti-

mation errors are evaluated with respect to the same metrics

measured by the gold standard GAITRite reference, and

reported in terms of bias and IQR. A great benefit of GSN

is the consistency of the results, which exhibit a very limited

number of outliers. Also, negligible performance variations



Average [s] Variability [s] Asymmetry [s]

bias (IQR) bias (IQR) bias (IQR)

Stride
HC 0.000 (0.004) -0.005 (0.014) 0.000 (0.008)

PD 0.000 (0.008) -0.003 (0.016) 0.000 (0.012)

Stance
HC -0.008 (0.020) -0.012 (0.029) -0.008 (0.027)

PD 0.000 (0.023) -0.008 (0.023) -0.008 (0.032)

Swing
HC 0.000 (0.020) -0.008 (0.027) -0.008 (0.023)

PD 0.000 (0.020) -0.010 (0.023) -0.008 (0.031)

TABLE I. Estimation errors (for IW and CW) with respect to the
GAITRite standard reference values of stride, stance and swing (rows),
average, variability and asymmetry (columns) metrics. The median value
(bias) and the interquartile rage (IQR) are shown. The HC and PD groups
are considered separately.

(in terms of estimation errors) can be observed between the

HC and PD groups, showing a high reliability even with a

challenging dataset which includes pathological individuals.

A slight underestimation of the stance and swing variability

and asymmetry can be observed (negative bias). Concerning

the statistical distribution of the features, a small decrease

is observed for the IW group with respect to CW, during

which the subjects were more likely to achieve a steady state

walking. Higher values (lower rhythm, higher variability and

asymmetry) are also measured for the PD group compared

to HC. An assessment of the statistical significance of these

differences provides an interesting avenue to future studies.

IV. CONCLUSION

In this study, we propose a novel deep learning based

method for digital gait segmentation. A comparison with one

of the most used algorithms based on wavelet transforms

shows the higher reliability of the proposed approach. A

rich and challenging dataset, including both healthy controls

(HC) and patients suffering from Parkinson’s disease (PD)

with different severity of motor symptoms, has been used

for validation. The performance has been assessed in terms

of event identification capabilities (i.e., the effectiveness in

the correct time localization of the initial and final foot

contact) and reliability in the quantification of the most com-

mon high-level gait-related features (average, variability and

asymmetry of stride, stance and swing time). The outcomes

strongly encourage further studies. Notably, the proposed gait

feature extraction model is particularly suitable for use in

unsupervised conditions or when a reference system (e.g.,

the GAITRite) is unavailable. The inclusion of clinical and

demographic data of PD and HC groups can be of primary

importance for improving the unsupervised assessment of

the disease progression, and to assist the clinical personnel

to make important therapeutic decisions.
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