
  

  

Abstract— This study aimed at evaluating whether people 
with a normal cognitive function can be discriminated from 
subjects with a mild impairment of cognitive function based on 
a set of acoustic features derived from spontaneous speech. Voice 
recordings from 90 Italian subjects (age >65 years; group 1: 47 
subjects with MMSE>26; group 2: 43 subjects with 20≤ MMSE 
≤26) were collected. Voice samples were processed using a 
MATLAB-based custom software to derive a broad set of known 
acoustic features. Linear mixed model analyses were performed 
to select the features able to significantly distinguish between 
groups. The selected features (% of unvoiced segments, duration 
of unvoiced segments, % of voice breaks, speech rate, and 
duration of syllables), alone or in addition to age and years of 
education, were used to build a learning-based classifier. The 
leave-one-out cross validation was used for testing and the 
classifier accuracy was computed. When the voice features were 
used alone, an overall classification accuracy of 0.73 was 
achieved. When age and years of education were additionally 
used, the overall accuracy increased up to 0.80. These 
performances were lower than the accuracy of 0.86 found in a 
recent study. However, in that study the classification was based 
on several tasks, including more cognitive demanding tasks. Our 
results are encouraging because acoustic features, derived for 
the first time only from an ecologic continuous speech task, were 
able to discriminate people with a normal cognitive function 
from people with a mild cognitive decline. This study poses the 
basis for the development of a mobile application performing 
automatic voice analysis on-the-fly during phone calls, which 
might potentially support the detection of early signs of 
functional cognitive decline. 

I. INTRODUCTION 

Population aging goes hand in hand with the fast growing 
of people with dementia worldwide. The transitory step 
between physiological aging and dementia is known as mild 
cognitive impairment (MCI). An early diagnosis of the decline 
of cognitive function is crucial to allow patients to get 
anticipatory access to pharmacological and cognitive-
stimulation therapies, which has been shown to increase the 
duration of independent living [1]. 

Dementia significantly affects human speech and language 
both at linguistic and paralinguistic level [2]. In the early phase 
of dementia, temporal parameters of speech are altered: 
notably longer hesitation times and lower speech rates [3,4], 
increased number and decreased length of voice segments [5], 
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increased number of word-finding pauses and higher 
percentage of voiceless segments [6-9]. Rhythm alterations 
have been highlighted also in terms of significantly less pitch 
modulation of people with Alzheimer's Disease (AD) 
compared to age-matched controls [10]. Therefore, automatic 
voice analysis and machine-learning techniques have been 
exploited for the early detection of cognitive impairment and 
monitoring of decline progression. Based on linguistic features 
from transcripts and acoustic features from the associated 
audio files, Fraser et al. were able to distinguish between AD 
and healthy subjects with a classification accuracy of >81% 
[11]. Similar results were found in [12], where acoustic 
features extracted from speech recordings provided high 
accuracy rates in classifying healthy versus AD (87%), MCI 
versus AD (80%), and healthy versus MCI (79%). Even higher 
classification accuracies were found in a subsequent work of 
the same group, in which speech analysis was performed on a 
mobile application, but still in a controlled environment [13]. 

Based on this evidence, within the context of the European 
project MoveCare, we aimed at developing a mobile 
application, running in background, able to compute acoustic 
features on-the-fly during phone calls without the need to 
record audio signals. Based on these acoustic features and on 
a learning-based classifier, the mobile app will discriminate 
between people with a normal and a mildly impaired cognitive 
function, becoming a tool for the daily cognitive monitoring of 
elderly people in a transparent and non-intrusive manner. This 
contribution represents a proof of concept for the development 
of the mobile app. Our first aim was to identify, if any, a subset 
of acoustic features derived from an ecologic spontaneous 
speech task able to discriminate between a normal and a mildly 
impaired cognitive function. The second aim was to build a 
learning-based classifier upon the selected features and to 
evaluate its accuracy in comparison to previous results 
achieved in the literature in a more controlled environment.  

The main novelties of this preliminary work are: (1) the 
classification was based on spontaneous speech; (2) we 
focused on early signs of cognitive decline; (3) we developed 
a MATLAB-based custom software in order to favor the 
porting on the mobile app instead of using PRAAT [14], a free 
computer software package for the scientific analysis of 
speech mostly used in previous studies; (4) we analyzed Italian 
samples which were never investigated. 

M.M. and C.L. are with SignalGeneriX Ltd, Limassol, Cyprus. 
S.M. is with Dept. of Information Engineering, Università Politecnica 

delle Marche, Ancona, Italy. 
M.Ci., C.G., and P.S. are with Consejería de Sanidad y Políticas Sociales, 

Junta de Extremadura, Mérida, Spain.  
N.A.B. is with Dept. of Computer Science, University of Milan, Italy.  

Automatic speech analysis to early detect functional cognitive 
decline in elderly population* 

E. Ambrosini, Member, IEEE, M. Caielli, M. Milis, C. Loizou, D. Azzolino, S. Damanti, L. 
Bertagnoli, M. Cesari, S. Moccia, M. Cid, C. Galán de Isla, P. Salamanca, N. A. Borghese, S. Ferrante 



  

II.  METHODS 

A. Participants and data collection 
A sample of 90 elderly subjects (age >65 years) were 

recruited at the Geriatric Unit of Fondazione IRCCS Cà 
Granda, Ospedale Maggiore Policlinico in Milan, Italy. 
Participants were divided into two groups based on the Mini-
Mental State Examination (MMSE) scores: (1) Subjects with 
a normal cognitive function (MMSE >26); (2) Subjects with a 
mild impairment of the cognitive function (20≤ MMSE ≤26). 
Subjects who were non-native Italian speakers, clinically 
unstable, affected by severe hearing or visual deficits, aphasic, 
and/or depressed (30-item Geriatric Depression Scale >9) 
were excluded.  

Subjects were met individually and were asked to tell an 
episodic story about their life in uninterrupted way for 2 
minutes. Voice signals were recorded in .WAV files (16kHz) 
using an ad-hoc toolbox developed in MATLAB and an 
external USB microphone. The study was approved by the 
Hospital Ethical Committee and participants had to provide 
their written informed consent. 

B. Data Analysis 
Before feature extraction, data were pre-processed. The 

polarity of the speech signal was estimated by using the 
algorithm described in [15] and reversed in case of a negative 
polarity. Then, to allow inter-subjects comparisons, voice 
signals were standardized. Standardized voice signals were 
finally analyzed to automatically extract the following 
acoustic features: (1) Percentage of unvoiced segments. i.e. 
segments without harmonic nature; (2) Mean pitch; (3) Mean, 
median, percentile 15th and 85th of the duration of voiced and 
unvoiced segments [12,13]; (4) Shimmer, i.e. the variation of 
amplitudes of consecutive periods; (5) Percentage of voice 
breaks, estimated as the number of distances between 
consecutive pulses longer than 1.25 divided by the pitch floor 
(i.e. 70Hz) [9]; (6) Standard deviation of the third formant 
(F3), which refers to tones between 1.5kHz and 2.5kHz; (7) 
Speech rate, i.e. the number of syllables divided by the total 
speech time [16]; (8) Mean duration of the syllables [16]; (9) 
Mean duration of the inter-syllabic pauses >250ms [16]; (10) 
Percentage of the phonation time, i.e. the intra- and inter-
syllabic nuclei time <250ms compared to the total speech time 
[16]; (1))Articulation rate, i.e. number of syllables divided by 
the phonation time without pauses [16]. 

The algorithm described in [17], based on the analysis of 
the residual harmonics, was used to discriminate between 
voiced and unvoiced segments and for pitch tracking. First, an 
auto-regressive model of the spectral envelope was estimated 
from the speech signal and the residual signal (e(t)) was 
obtained by inverse filtering. For each Hanning-windowed 
frame, the amplitude spectrum (E(f)) was then computed. E(f) 
has a relatively flat envelope and, for voiced segments, 
presents peaks at the harmonics of the fundamental frequency 
F0. From E(f), and for each frequency in the range [70 Hz; 
500Hz], the Summation of Residual Harmonics (SRH) was 
computed as follows: 

𝑆𝑅𝐻(𝑓) = 𝐸(𝑓) + ∑ +𝐸(𝑘 ∙ 𝑓) − 𝐸((𝑘 − /
0
) ∙ 𝑓)123456

780   (1) 
where 𝑁:;<= is the number of the harmonics (𝑁:;<= = 5).  

The estimated pitch value (F0*) for a given residual frame 
was the frequency maximizing SRH(f) at that time. SRH was 
also used to discriminate between voiced and unvoiced 
segments by simple local thresholding: a frame was defined as 
voiced if SRH(F0*) was higher that a pre-defined threshold 
(0.07). The frame length and the frame shift were fixed at 
100ms and 10ms, respectively. The percentage of unvoiced 
segments was finally computed by simply dividing the number 
of unvoiced frames by the total number of frames, while the 
mean pitch was computed by averaging the value of F0* 
estimated for all voiced frames. Based on the results of this 
algorithm, the mean, median, percentile 15th and percentile 
85th of the duration of the voiced / unvoiced segments were 
also computed.  

The shimmer was computed as follows [18]:  
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Q8/        (2) 
where 𝐴Q	is the amplitude of the i-th voiced framed 

associated to the pitch value F0* and N is the total number of 
voiced frames.  

The percentage of the voice breaks was computed starting 
from the identification of the glottal pulses, defined as the time 
elapsing between the opening and the closure of the glottis. 
Estimation of both glottal closure instants (GCIs) and glottal 
openings instants (GOIs) was automatically performed by 
using the Dynamic Programming Projected Phase-Slope 
Algorithm (DYPSA) algorithm [19]. A voice break was 
defined as the time interval between consecutive pulses longer 
than 18ms [9]. The percentage of voice breaks was then 
computed as the ratio between the time periods classified as 
voice breaks and the total speech time.  

F3 was estimated by using the algorithm described in [20], 
which is based on the calculation of the negative derivative of 
the argument of the chirp-z transform spectrum of the speech 
waveform. The algorithm was applied to track the first five 
formants, while the frame length and the frame shift were fixed 
at 32ms and 16ms, respectively. The standard deviation of F3 
was then computed considering all voiced frames.  

The remaining features were based on syllables’ 
recognition, which was performed by using the algorithm 
described in [21]. This algorithm computed the envelope of the 
speech signal by means of a half-wave rectification and a 
linear predictive method. The syllables were then identified by 
a simple thresholding method, and the threshold value was 
fixed at a percentage of the root mean square of the rectified 
signal. Once the syllables were recognized, the calculation of 
the speech rate, the mean duration of syllables and inter-
syllabic pauses, the percentage of the phonation time and the 
articulation rate was straightforward.  

Data analysis was performed in MATLAB. 

C. Statistical Analysis 
The t-test for independent samples was applied to compare 

the two groups in terms of age, while the Mann-Whitney U test 
was used to compare the years of education (YoE) and the 
MMSE scores. Linear mixed model analyses were carried out 
on each voice feature, with age and YoE included as 
covariates, group, age, and years of education entered as fixed 
effects and the voice feature as dependent variable.  



  

D. Classifier 
The features upon which the classifier was built were 

selected based on the results of the statistical analysis. Two 
different datasets were considered: (D1) only acoustic 
features which were significantly different between the two 
groups; (D2) the same acoustic features plus age and YoE.  

To perform feature classification, several standard 
machine-learning classifiers were investigated. We focused 
on standard classifiers, despite the recent solutions proposed 
in the field of deep learning [22], because our dataset was 
limited in number and more complex models, such as 
convolutional neural networks, would have led to overfitting 
issues. In particular, we investigated regularized logistic 
regression (LoR), support vector machines (SVMs), random 
forest (RF), k-nearest neighbors (kNN) and Adaboost [23]. 
Each classifier was trained both on D1 and D2.  

For LoR hyperparameter tuning, both regularization 
strength and norm were cross-validated during training, using 
grid search and 5-fold cross validation. The grid-search space 
for the regularization strength was set to [-3,4] in logarithmic 
scale, with 8 equally spaced values. Both L1 and L2 norm were 
cross-validated for tuning the norm. As for SVM, both the 
penalty and kernel-coefficient parameter were cross-validated 
with a grid-search space equal to [1,6] and [-7,-2], 
respectively, in logarithmic scale with 6 equally spaced values. 
Regarding RF and Adaboost, the hyperparameters tuned were 
the number of tree estimators and the maximum tree depth, 
both with a grid-search space of [10,100,1000] for RF and of 
[50,100,200] and [1,5,10,50,250] for Adaboost. The best 
number of neighbors for kNN was searched in the range [3,15]. 
For each classifier, the best hyperparameters were chosen 
according to the classification accuracy on the validation test. 

Considering the relatively low number of subjects involved 
in this study, the leave-one-out cross validation was used for 
robust testing: 90 different training were performed, every 
time training on 89 subjects and testing on the remaining one. 
The classification was implemented in Python using the Scikit-
learn libraries. 

III. RESULTS 

The characteristics of the recruited subjects are reported in 
Table I. A total of 47 and 43 subjects were included in Group 
1 (people with a normal cognitive function) and Group 2 
(people with a mildly impaired of the cognitive function), 
respectively. In both groups, the majority of recruited subjects 
were female. Significant differences in terms of age, YoE and 
MMSE scores were found, with people with a mildly impaired 
cognitive function being characterized by fewer years of 
schooling and an older age, as previously observed [13]. 

TABLE I.  PARTICIPANTS CHARACTERISTICS.  

 Group 1 Group 2 P-value 

Age (years)a 76.5 (4.9) 82.8 (4.7) <0.001c 

Men / female 6 / 41 11 / 32  

Years of Educationb 13 (3.5) 8 (8) <0.001d 

MMSEb 29 (1) 24 (3) <0.001d 

a. Mean (standard deviation). b. Median (interquartile range). c. T-test for independent samples.              
d. Mann-Whitney U test. 

Fig. 1 shows an example of an audio signal recorded 
during one of the interviews (female, MMSE = 30, age = 74 
years, who said “lascia” that means “to let”). The top panel 
displays the identified voiced segments (in red) overlapped on 
the overall standardized voice signal (in black). The second 
panel reports the instants of glottal closures (vertical red lines) 
estimated by the DYPSA algorithm over the voiced segments 
(in black). The third panel shows the spectrogram, with darker 
color indicating higher energy, and highlights the third 
formant (red asterisks). Finally, the lower panel identifies the 
syllables (in red) over the overall standardized voice signal (in 
black): two syllables were correctly identified. 

Figure 1.  Example of an audio signal recorded during one of the interviews. 
The recorded subject was a woman (MMSE=30, age of 74 years) who said 
“lascia”, that means “to let”. 

Table II summarizes the results in terms of acoustic 
features: mean values and standard deviation of the two 
groups, as well as the results of the statistical analysis. A 
significant increase of the % of the unvoiced segments and of 
voice breaks was found in people with a mild impairment of 
the cognitive function with respect to controls with a normal 
cognitive function. Furthermore, the mean, median and 
percentile 85th of the duration of the unvoiced segments 
significantly increased in the presence of a mild cognitive 
impairment. Finally, the speech rate significantly decreased, 
and the duration of the syllables significantly increased with 
a decline of the cognitive function. Also, age and years of 
education had a significant influence on some voice features: 
specifically, the speech rate, the % of the phonation time, and 
the duration of pauses were significantly influenced by age, 
while the pitch and the standard deviation of F3 were 
influenced by the years of education. 



  

TABLE II.  VOICE FEATURES: MEAN VALUES AND STANDARD 
DEVIATION FOR THE TWO GROUPS AND RESULTS OF THE LINEAR MIXED 
MODEL ANALYSES. THE FEATURES WHICH WERE SIGNIFICANLTY DIFFERENT 
BETWEEN THE TWO GROUPS ARE HIGHLIGHTED IN RED. 

 Group 1 Group 2 P-value 
(group) 

P-value 
(age) 

P-value 
(YoE) 

Unvoiced [%] 33.8 
(10.6) 

44.4 
(17.4) 0.018 0.759 0.484 

Pitch [Hz] 166.8 
(24.6) 

174.5 
(33.4) 0.669 0.258 0.026 

Voiced duration [s]      

Mean 0.99 
(0.34) 

0.88 
(0.43) 0.486 0.923 0.471 

Median 0.71 
(0.29) 

0.64 
(0.32) 0.507 0.866 0.836 

Percentile 15% 0.22 
(0.07) 

0.22 
(0.10) 0.454 0.714 0.105 

Percentile 85% 1.86 
(0.7) 

1.64 
(0.84) 0.406 0.739 0.239 

Unvoiced duration [s]      

Mean 0.48 
(0.12) 

0.69 
(0.36) 0.016 0.303 0.829 

Median 0.32 
(0.08) 

0.42 
(0.17) 0.025 0.429 0.283 

Percentile 15% 0.14 
(0.03) 

0.14 
(0.03) 0.948 0.455 0.435 

Percentile 85% 0.86 
(0.25) 

1.39 
(1.00) 0.026 0.266 0.827 

Shimmer [dB] 5.2 
(0.6) 

5.1 
(0.9) 0.069 0.083 0.087 

Voice Breaks [%] 35.4 
(10.4) 

45.8 
(16.9) 0.018 0.763 0.431 

SD-F3 [Hz] 460 
(43.7) 

480.7 
(49.0) 0.545 0.712 0.013 

Speech rate [syl/s] 3.8 
(0.6) 

3.2 
(0.6) 0.037 0.026 0.654 

Syllables duration [s] 0.15 
(0.02) 

0.16 
(0.02) 0.032 0.708 0.318 

Pauses duration [s] 0.74 
(0.2) 

0.95 
(0.37) 0.740 <0.001 0.279 

Phonation [%] 70.6 
(8.4) 

62.6 
(10.7) 0.055 0.005 0.600 

Articulation Rate 
[syl/s] 

5.4 
(0.5) 

5.1 
(0.6) 0.393 0.844 0.171 

TABLE III.  ACCURACY OF THE DIFFERENT CLASSIFICATION 
ALGORITHMS ON THE TWO DATASETS (D1: VOICE FEATURES ALONE; D2: 
VOICE FEAUTURES PLUS AGE AND YEARS OF EDUCATION). 

Algorithm Dataset Precision Recall Accuracy F1-score 

Logistic 
regression 

D1 0.75 0.63 0.72 0.68 

D2 0.78 0.74 0.78 0.76 

Support vector 
machines 

D1 0.74 0.60 0.71 0.67 

D2 0.76 0.72 0.76 0.74 

Random Forest 
D1 0.67 0.56 0.66 0.61 

D2 0.74 0.67 0.73 0.71 

K-nearest 
neighbors 

D1 0.69 0.58 0.68 0.63 

D2 0.86 0.70 0.80 0.77 

Adaboost 
D1 0.60 0.63 0.62 0.61 

D2 0.79 0.77 0.79 0.78 

 
Seven voice features, for which a significant group effect 

was found, were used to train the classifiers, alone (dataset 

D1) or together with age and YoE (dataset D2). Table III 
reports the results in terms of precision, recall, accuracy and 
F1-score of the different classifiers. For voice features alone, 
LoR showed the best performance with an overall accuracy of 
0.72 and the highest precision and recall in identifying 
subjects with a mildly impaired cognitive function. When age 
and YoE were also considered, all classifiers improved their 
performances and the best performance was obtained by kNN 
and Adaboost, which achieved, respectively, an accuracy of 
0.80 and 0.79 and a F1-score of 0.77 and 0.78: kNN resulted 
to be more precise in identifying subjects with a mildly 
impaired cognitive function (0.86), while Adaboost achieved 
a higher recall value (0.77). 

IV. DISCUSSION 
A sample of 90 Italian subjects (age >65 years) with no or 

subtle impairment of the cognitive function was recruited in 
this study in order to evaluate the capability of acoustic 
features derived from spontaneous speech to distinguish 
between normal aging and early signs of pathological decline 
of cognitive function. As previously observed, our results 
confirmed, for the first time on an Italian sample, that decline 
of cognitive function is associated with a significant increase 
of the unvoiced segments [9], of voice breaks [8,9], of the 
duration of unvoiced segments, and of the mean duration of 
syllables [8,17], and with a significant decrease of the speech 
rate [8,17]. Contrary to previous literature [8,9,17], where 
differences were found between healthy and AD subjects, we 
observed significant differences between people with a 
normal and a mildly impaired cognitive function, which is 
crucial in order to allow an early detection of functional 
cognitive decline based on automatic speech analysis. 
Furthermore, as far as we know, this is the first study where 
significant differences in terms of acoustic features were 
observed during an ecologic continuous speech task and using 
a MATLAB-based custom software.  

The significant voice features were used to train a learning-
based classifier. Standard classifiers were investigated to 
avoid overfitting due to the low sample size. An overall 
accuracy of 72% was found for a logistic regression classifier 
when voice features were used alone. The accuracy increased 
up to 80% when age and years of education were additionally 
used. In this case, the k-nearest neighbors classifier performed 
better, achieving the highest precision (86%). Good 
performances were obtained also by Adoboost, which 
achieved the highest recall (77%) for the classification of 
people with a mildly impaired cognitive function. The better 
accuracy when age and YoE were additionally used for 
classification is in line with previous evidence showing that 
lower education levels and older age are associated with lower 
cognitive performance [24]. It is worth noticing that, due to 
the limited number of subjects in the testing datasets, 
conclusions about the best classifier should not be drawn and 
further investigation is needed. 

Overall, the classification performance achieved was lower 
than the 86% of accuracy in classifying healthy subjects 



  

versus MCI people obtained in [13]. However, it is important 
to highlight that in [13] several tasks, including verbal 
fluency, picture description, counting down, and free speech 
tasks were performed to derive the voice features used for 
classification. Specifically, the Authors pointed out the 
importance to choose tasks which require sufficient cognitive 
effort in order to detect early signs of cognitive decline. 
However, within the MoveCare project, we aimed at 
developing a monitoring system completely transparent to the 
subject. To reach this aim, we plan to use free speech during 
phone calls, without the need to record any voice samples.  

The main limitation of this study is the use of MMSE score 
to discriminate between the two groups. MMSE is proven to 
have good concurrent validity with other neuropsychological 
assessment instruments, but is not very specific, and 
moreover it is highly affected by age and education level. 
Another limitation is related to the heterogeneity of the 
groups, which significantly differed in terms of age and YoE, 
with subjects with a mildly impaired  cognitive function being 
older and with a lower education level. Although this is in line 
with previous evidence [9] and further supports the 
hypothesis that cognitive reserve might have the potential for 
slowing the decline of cognitive function, it can represent a 
confounding factor for our results. Indeed, it has been shown 
that age and education level influence spontaneous oral and 
written language [25]. To counteract this limitation, included 
age and YoE were included as covariates in the linear mixed 
model analyses and we found out that, as previously observed 
[25], even when accounting for the cumulative effect of age 
and education, voice features were still able to discriminate 
between a normal and a mildly impaired cognitive function.  

Our results are encouraging because acoustic features, 
derived for the first time only from an ecologic continuous 
free speech, showed to have a moderate capability to 
discriminate between healthy controls and subjects with a 
mild impairment of the cognitive function. These promising 
results pose the basis for the development of the mobile 
application, which could be use daily in a transparent and non-
intrusive manner, favoring a longitudinal assessment of the 
cognitive function of elderly people and therefore supporting 
the detection of early signs of functional cognitive decline.  
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