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Abstract—For many applications, hand gesture recognition
systems that rely on biosignal data exclusively are mandatory.
Usually, theses systems have to be affordable, reliable as well
as mobile. The hand is moved due to muscle contractions that
cause motions of the forearm skin. Theses motions can be
captured with cheap and reliable accelerometers placed around
the forearm. Since accelerometers can also be integrated into
mobile systems easily, the possibility of a robust hand gesture
recognition based on accelerometer signals is evaluated in this
work. For this, a neural network architecture consisting of
two different kinds of recurrent neural network (RNN) cells
is proposed. Experiments on three databases reveal that this
relatively small network outperforms by far state-of-the-art
hand gesture recognition approaches that rely on multi-modal
data. The combination of accelerometer data and an RNN forms
a robust hand gesture classification system, i.e., the performance
of the network does not vary a lot between subjects and it is
outstanding for amputees. Furthermore, the proposed network
uses only 5ms short windows to classify the hand gestures.
Consequently, this approach allows for a quick, and potentially
delay-free hand gesture detection.

I. INTRODUCTION

Decoding hand gestures from biosignals is essential for
a variety of different applications such as human machine
interaction [1] and virtual reality [2]. Depending on their
actual application, such hand gesture recognition systems
have to meet various requirements. In general, cheap systems
that detect hand movements with very low delay are desired.
Often it is required that the hand movement detection sys-
tems are part of an embedded system or built as a mobile
device.

Especially in the medical field, hand gesture detection
systems find frequent application, e.g., in prosthesis control
[3] or in the control of exoskeletons [4], [5]. These systems
typically rely on surface electromyography (SEMG) signals
exclusively. These SEMG signals are acquired by noninvasive
electrodes and allow for the decoding of hand movements
from electric fields that are caused by muscle contractions.
The overall recognition pipeline is usually composed of
a preprocessing step followed by a hand-crafted feature
extraction and a conventional classifier such as a support
vector machine or a random forest [6], [7], [8]. Recently,
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different kinds of deep learning methods including convolu-
tional neural networks (CNNs) [9], [10] and recurrent neural
networks (RNNs) [11], [12] have been employed. On the one
hand, RNNs turn out to be a promising tool as even small
networks with a very limited number of trainable parameters
have shown outstanding classification performance. On the
other hand, CNNs are particularly suitable for analyzing
raw data because a feature extraction and a classifier are
jointly learned in a single end-to-end trained network. For
these reasons, these networks are particularly suitable for
classifying hand gestures in SEMG data and have shown
promising performance [9], [10]. However, in general, all
of the mentioned approaches suffer from two drawbacks.
First, to achieve satisfying classification results, long analysis
windows are required resulting in long delays. Second, an
expensive and complicated SEMG system is required for data
acquisition.

An affordable and simple alternative to SEMG systems
is the data acquisition with accelerometers. The sensors are
placed around the forearm similar to the usually used sSEMG
electrodes. Each accelerometer can be used to measure the
local skin motion caused by muscle contractions. Since the
accelerometer data indirectly include information about the
voluntary muscle contraction, they can be used to decode
hand movements.

In this work, a stacked RNN-based architecture for hand
movement recognition is proposed. This network combines
the feature extraction abilities of CNNs and the sequential
analysis capabilities of RNNs by using different kinds of
RNN cells. The proposed network is capable of classifying
over 40 different hand gestures given windows of length
Sms.

The suitability of the proposed approach for classifying
hand movements is validated using three databases contain-
ing data recordings from able-bodied as well as amputated
subjects. For all databases, the RNN-based system signifi-
cantly outperforms state-of-the-art approaches even though
it relies only on accelerometer data. The network attains
satisfying classification results for all subjects. Furthermore,
having in mind that usually window sizes around 200 ms
are necessary to achieve satisfying results, the short window
size is advantageous since the delay of the hand movement
recognition system is minimal.

II. NETWORK ARCHITECTURE FOR
ACCELEROMETER SIGNAL ANALYSIS

With standard approaches based on hand-crafted features
and a conventional classifier such as random forest it is
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not possible to reliably classify short windows. However, by
exploiting the sequential nature of a signal, short windows
are sufficient to recognize hand gestures correctly. There-
fore, an RNN-based network is proposed. The input of the
network is a sequence of three-dimensional matrices. The
first dimension corresponds to the accelerometers (usually
arranged in a circle around the forearm) and the second to the
samples of the window. The third dimension represents the
three axes of the accelerometer and is treated in the network
like the channel dimension of a color image. The proposed
architecture contains two different kinds of RNN cells, long-
short term memory (LSTM) cells [13] and convolutional
LSTM (ConvLSTM) cells [14]. These cells are stacked.

To extract features and to exploit the spatial information
of the sensor position, a ConvLSTM cell is used. The
corresponding hidden layer of the ConvLSTM cell can be
described as (H, Cy) = HO (X, Hi—1,Ct—1), where the
subscript ¢ denotes the current time step, H the output vector,
X the input vector, and C' the cell state. The cell state is

updated via
C; =I;, ® tanh (WXC * X + Wy xHi_1 + Bc) )
+F,0Ci 1,

where * denotes the convolution, ® the Hadamard product,
and
I, =o0(Wxy+ Xy + Wy« Hi_1 + By) (2
and
Ft:a(WXF*Xt+WHF*Ht_1+BF). 3)

All W matrices contain the trainable filter kernels and every
B represents a trainable bias. The output of the cell is
calculated by

Ht = Ot ® tanh (Ct) (4)
with
O, =(Wxo * Xy + Wyo * hi—1 + Bo). %)

The second kind of RNN cell used in this work is the
standard LSTM cell. An illustration of an LSTM cell is
shown in Fig. 1. The mathematical formulation of an LSTM

Tllustration of an LSTM cell.

is very similar to that of a ConvLSTM and can be obtained
by substituting the convolution by a matrix multiplication
in the above equations and, consequently, replacing the bias
matrices by vectors.

The proposed network is a stacked combination of above-
mentioned RNN cells and is shown in Fig. 2. The first cell
of the network is a ConvLSTM with 3 x 3 filter kernels. The
number of filter kernels of a single convolution operation
is 32. It is followed by a max-pooling with a kernel size
of 4 x 4 and a stride of 2. After the pooling layer another
ConvLSTM cell follows. This RNN cell has just 16 filter
kernels per convolution layer but the same filter size as in
the first ConvLSTM cell. The final RNN cell is a standard
LSTM cell with a state size of 512. To obtain the actual
classification the output of the last RNN cell is fed through
a fully-connected layer followed by a softmax activation
function.

III. TRAINING AND VALIDATION OF THE
NETWORK

To generate enough training examples the training of the
network is based on overlapping sequences of fixed length
that are extracted from the training data. Each window of the
sequence is classified by the network leading to a sequence of
labels. However, only the classification of the final window
is deployed to calculate the error of the network. Let gy
denote the network’s classification of the final window 7.
Then the loss function for optimizing the network is based
on the cross-entropy given by

E(O|X,yr) = —yrlog (97 (6|X)) (6)

with X being the input sequence and yr the ground truth
of the final time step 7" represented as a one-hot encoded
vector. The parameters of the network are denoted by ©.
In contrast to the training procedure, the sequence length
varies in the test case because all test examples are processed
as one sequence. Unlike the training case, no sequences
of fixed length are extracted. Consequently, the network
estimates a class for each window of a test sequence. This
test setting is close to the actual application of such classifiers
because in a hand gesture system the classifier has to detect
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INlustration of the proposed network architecture in training configuration. The network shown is enrolled over time. MaxPool denotes a two-

dimensional max-pooling and FC represents a fully-connected layer that is used for classification.

hand gestures in each window coming to the system in
realtime. To evaluate the performance of the network for each
window the predicted class and the corresponding ground
truth are compared and the accuracy is calculated.

IV. EXPERIMENTS
A. Databases

To validate the proposed network architecture, experi-
ments on three different publicly available databases were
conducted. The databases are DB2, DB3, and DB7 of the
Ninapro project [6], [15]. The databases provide data to eval-
uate hand gesture recognition systems based on biosignals.

The experiments of all three databases followed mainly
the same protocol. For the experiments, sensors containing
at least an accelerometer and an SEMG electrode were used.
If possible, 12 of these sensors were placed around the
forearm of the subjects. The subjects performed different
hand movements. Each movement was repeated 6 times.

The data of DB2 and DB3 were acquired with the Delsys®
Trigno™Wireless sensors. Each of these sensors acquires
SEMG signals and the data of a tri-axial accelerometer
sampled at 148 Hz. In order to match the sampling frequency
of the SEMG signals the accelerometer data were upsampled
to 2kHz by linear interpolation already within the Ninapro
project. The number of performed hand gestures in both
databases DB2 and DB3 is 50 (excluding rest). The hand
gestures range from movements of single finger over wrist
motions to complex motion sequences such as different
grasps. DB2 contains experiments of 40 able-bodied persons.
In contrast, DB3 includes the experiments of 11 amputees.

Database DB7 contains experiments of 20 able-bodied
subject and 2 amputees. The subjects were asked to perform
40 (exclusive rest) different hand movements. The move-
ments are a subset of the set of hand gestures performed in
DB2 and DB3. For DB7, the Delsys® Trigno™IM Wireless
System was used to acquire the data. The sensors of this
system acquire SEMG data at 2kHz as well and the signals
of an inertial measurement unit (IMU) at 128 Hz. The IMU
with 9-degree-of-freedom consists of tri-axial accelerometer,
gyroscope, and magnetometer. In this work, only the tri-axial
accelerometer of the IMU is used. Analogous to DB2 and
DB3 the accelerometer signals were upsampled to 2 kHz.

TABLE I
ACCURACY COMPARISON OF ACCELEROMETER AND SEMG. THE
REPORTED RESULTS FOR ACCELEROMETER WERE OBTAINED BY A
NETWORK BASED ON A SINGLE LSTM CELL WITH A STATE OF SIZE 256.
THE RESULTS OF [12] ARE THE BEST PUBLISHED RESULTS FOR DB2
AND DB3 AND WERE ACHIEVED ON 100 ms LONG WINDOWS THAT
WERE REPRESENTED BY A FEATURE VECTOR AND CLASSIFIED BY AN

RNN.
Database  Accelerometer sEMG [12]
DB2 81.8% 78.0 %
DB3 70.1% 55.3%

B. Preprocessing

The training and the test datasets were generated following
the recommendations for the database. The signals had to
be preprocessed before feeding them to the network. A
normalization was performed for each of the 3 axes of
the accelerometer individually by subtracting the mean and
dividing by the standard deviation. All necessary statistics
were calculated based on the training data exclusively. For
the actual classification the signals were split into windows
of 5ms length.

C. Results

To allow comparisons with previous works, reported re-
sults for DB2 and DB3 are average accuracies that are
calculated across all subjects of the corresponding database
while for DB7 the median is reported.

The average classification accuracies obtained by the
proposed network are shown in Table I. The results are
compared with, to the best of your knowledge, best published
results in both DB2 and DB3 [12]. These results were
obtained based on sEMG data and an RNN. The sEMG
signals were split into 100ms long windows followed by
a window-wise feature extraction to prepare the signals
for the RNN classification. With the proposed approach
the hand gestures of healthy subjects in DB2 could be
classified with 3.8 % (absolute) higher accuracy than by the
SEMG-based system. The difference is even more significant
for amputees. The accelerometer-based RNN improves the
average classification accuracy by almost 15 % absolute. The
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Fig. 3. Boxplots of the obtained results for all databases.

TABLE I
RESULTS OF THE PROPOSED NETWORK ON DB7. THE RESULTS OF THE
PROPOSED NETWORK ARE COMPARED WITH STATE-OF-THE-ART
RESULTS ACHIEVED WITH AN APPROACH THAT TAKES ALL IMU
MODALITIES INTO ACCOUNT, NOT JUST THE ACCELEROMETER.

Data / Method able-bodied  amputated
IMU / [15] 81.7% 7.7 %
Accelerometer / proposed RNN 89.8 % 85.4%

boxplots in Fig. 3 show that no severe outliers were obtained.
Furthermore, for some amputees the robustness of the hand
gestures recognition is at the same level as for abled-bodied
subjects.

The results of the proposed network on DB7 are presented
in Table II. The presented approach outperforms the state-
of-the-art system [15] by about 8 % absolute for both abled-
bodied subjects and amputees, even though the state-of-
the-art system uses in addition to the accelerometer also
the gyroscope and the magnetometer. Moreover, the state-
of-the-art approach requires 256 ms long windows, whereas
the presented network handles significantly shorter windows
of length 5ms. The performance of the system in [15]
varies significantly among the subjects. For several subjects
the individual classification accuracy is roughly 20 % lower
than the average accuracy calculated over all subjects. The
boxplots in Fig. 3 reveal that the proposed network achieves
similar but very good results for all subject, even for the
amputees. Overall, the results indicate that the proposed
network is more robust and more accurate than state-of-
the-art approaches even though only accelerometer data are
provided for classifying hand gestures.

V. CONCLUSIONS

In this work, an RNN hand gesture classification based
on accelerometer data was proposed. A combination of

ConvLSTMs and standard LSTM cells was used to exploit
both temporal and spatial information in the accelerometer
signals. This approach is preferable to state-of-the-art sys-
tems in terms of better classification accuracy and shorter
window length requirements. The classification accuracy can
be improved by nearly 15% and the window length can be
reduced to 5 ms compared to 100 / 200 ms. Furthermore, the
results of the experiments reveal that the proposed archi-
tecture works comparably well for all individual subjects.
It seems to take the physiological characteristics of the
individual subjects into account. Since the proposed approach
showed promising results especially for amputees it would
be interesting to evaluate such an accelerometer-based hand
gesture classifiers in a real-world scenario.
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