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Abstract

Maintaining anesthetic states using automated brain-state prediction systems is expected to reduce 

drug overdosage and associated side-effects. However, commercially available brain-state 

monitoring systems perform poorly on drug-class combinations. We assume that current 

automated brain-state prediction systems perform poorly because they do not account for brain-

state dynamics that are unique to drug-class combinations. In this work, we develop a k-nearest 

neighbors model to test whether improvements to automated brain-state prediction of drug-class 

combinations are feasible. We utilize electroencephalogram data collected from human subjects 

who received general anesthesia with sevoflurane and general anesthesia with the drug-class 

combination of sevoflurane-plus-ketamine. We demonstrate improved performance predicting 

anesthesia-induced brain-states using drug-specific models.

I. Introduction

Anesthesiologists typically administer anesthetic-drugs to induce altered states of arousal 

that range from sedation to general anesthesia (GA). To induce these states, anesthetic-drugs 

are typically administered and adjusted empirically based on drug pharmacokinetic and 

pharmacodynamic properties as well as physiological variables such as changes in the heart 

rate or blood pressure. This current empirical approach to anesthetic-drug dosing has been 

associated with the inadvertent overdosing and underdosing of anesthetic-drugs. Overdosing 
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of anesthetic-drugs is associated with cardiovascular and respiratory side-effects and delayed 

recovery [1], while the underdosing of anesthetic-drugs is associated with unintended 

intraoperative awareness and post-traumatic stress disorder [2]. Thus, principled strategies 

for brain-state monitoring are expected to improve patient care directly.

In theory, electroencephalogram (EEG)-based brain-state monitoring is a principled strategy 

that may help limit drug overdosing and underdosing. However, the reliability of existing 

EEG-based brain-state monitoring devices has been called into question in numerous clinical 

scenarios [3]. One such scenario is during brain-state monitoring of anesthetic drug-class 

combinations [4]. Clinicians routinely administer the drug-class combination of gamma-

amino-butyric acid A (GABAA) receptor agonist drugs to maintain unconsciousness and N-

methyl-D-aspartate (NMDA) receptor antagonist drugs as part of a balanced GA technique 

[5, 6]. Sevoflurane is an inhaled anesthetic vapor that is routinely administered to maintain 

unconsciousness in patients. The GABAA receptor is considered the principal receptor target 

for the neurophysiological dynamics associated with sevoflurane. These dynamics include 

increased slow (0.1–2 Hz) and beta (13–33 Hz) oscillation power during sedation and 

increased delta (2–4 Hz), theta (4.1–8 Hz) and frontal alpha (8.1–12 Hz) oscillation power 

during GA [7]. Ketamine is an intravenous anesthetic that is routinely administered with 

sevoflurane as an anesthetic-adjunct for anti-nociception and to decrease post-operative pain 

and opioid consumption. The NMDA receptor is considered to be the principal target 

receptor for the neurophysiological dynamics associated with ketamine. These dynamics 

include decreased alpha oscillation power and increased theta and beta-gamma (30–45 Hz) 

oscillation power at clinically-recommended drug doses for anti-nociception [5,8].

Recent studies of oscillations associated with anesthetic-drug-class combinations (e.g., 

GABAA agonist and NMDA antagonist drugs) provide a framework that may help foster 

improvements to current brain-state monitoring paradigms [5,6]. For example, high beta-

gamma oscillation power is typically observed both in awake and active brain-states and 

during ketamine-induced GA [8]. Neurophysiologic changes like these may explain why 

current brain-state monitoring systems, which are designed using a one-model-fits-all-drugs 

approach, perform poorly when exposed to drug-class combinations. The administration of 

ketamine during sevoflurane GA causes current brain-state monitors to paradoxically 

interpret the patient’s EEG as awake, even though the patient under GA. It is therefore not 

surprising that EEG-based brain-state monitors have not been incorporated into clinical 

standard-of-care practices due to their unreliability in relatively common clinical scenarios 

[3]. Moreover, the models underlying commercially available brain-state monitors are 

proprietary [3]. Therefore, the extent to which these models, when optimized for drug-class 

combinations, may improve brain-state monitoring remains unclear.

In this work, we developed an EEG-based automated brain-state prediction system using 

machine learning to classify the awake, sedated, and GA brain-states. We hypothesized that 

optimizing models for drug-specificity would improve model performance. We defined 

drug-specific models as those which were evaluated on data similar to that within the 

training set. We applied the k-nearest neighbors (KNN) classification algorithm to a uniform 

set of features to investigate whether improvements to current brain-state classification of a 
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drug-class combination routinely encountered in clinical practice is feasible. We 

demonstrated improved performance in our drug-specific models over our cross-test model.

II. Materials And Methods

A. Subject Selection and Data Recording

The Partners Human Research Committee approved our research study that was conducted 

at the Massachusetts General Hospital in Boston, MA, USA. A total of 12 healthy volunteers 

were recruited for this study (7 males; 5 females). Mean weight was 69.9 kg (SD, ±11.7) and 

mean BMI was 24.1 kg/m2 (±3). Subject ages ranged from 20-34 years with a mean age of 

25 (±4.8). We induced and allowed recovery from sevoflurane GA and the drug-class 

combination of sevoflurane-plus-ketamine GA in each of the 12 volunteers. Thus, each 

volunteer received both sevoflurane-induced GA and sevoflurane-plus-ketamine-induced GA 

on separate study days ranging 2 to 7 days apart. Sevoflurane was administered via tight-

fitting face-mask. For the sevoflurane-induced GA visit, we increased the end-tidal 

sevoflurane concentration in a stepwise fashion from baseline (awake) to 1.1% (sedated), 

2.1% (GA), and 2.8% (GA). Each concentration level was maintained for 15 minutes. For 

the sevoflurane-plus-ketamine-induced GA visit, after the baseline (awake) state, we 

increased the sevoflurane end-tidal concentration to 2.1% (GA) and maintained it for 15 

minutes. Next, we administered a bolus of an anti-nociceptive dose of ketamine (0.75mg/kg) 

while maintaining the sevoflurane concentration for an additional 30 minutes (GA).

We recorded the EEG using the Waveguard system (ANT neuro, Netherlands) using a 

standard, high-density 64-channel EEG cap (ANT neuro, Netherlands). Data were down-

sampled to 250 Hz and interpolated (for bad channels) using ASA-Lab software (ANT 

neuro, Netherlands). A nearest-neighbor Laplacian reference was applied to filter out 

features which were shared among neighboring electrodes. We extracted our features from 

the raw data of five frontal electrodes. The median of each feature across the five electrodes 

was evaluated to isolate frontal EEG dynamics. The multitaper approach for spectral 

analysis was used to obtain spectral estimates. The multitaper parameters are as follows: 

window length T = 4 s with no overlap, time-bandwidth product TW = 3, number of tapers 

K = 5, and spectral resolution = 1.5 Hz. We normalized spectral features by the median 

baseline (awake) slow power of each subject. We chose a window with no overlap so that 

each epoch would be independent from those preceding it, providing some theoretical 

guarantees to the machine learning algorithms we used [9].

B. Feature, Algorithm, and Hyperparameter Selection

For the sevoflurane visit, we selected 5-minute ECG epochs during the awake states (pre- 

and post-anesthesia) and after the sevoflurane reached the desired steady-state 

concentrations of 1.1%, 2.1%, and 2.8%. For the sevoflurane-plus-ketamine visit, we 

selected 5-minute EEG epochs during the awake states (pre- and post-anesthesia), after the 

sevoflurane reached a steady-state concentration of 2.1%, and approximately 2 minutes after 

the ketamine dose was administered. We classified a given 4 s epoch as one of three a priori 
defined anesthetic-states: GA (2.1% sevoflurane, 2.8% sevoflurane, or 2.1% sevoflurane-

plus-ketamine), sedation (1.1% sevoflurane), or awake (pre- or post-anesthesia). We 
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combined the 2.1% and 2.8% sevoflurane states into one brain-state class, as they are both 

GA brain-states with similar spectral dynamics. For similar reasons, we ignored 

misclassifications between the sevoflurane-plus-ketamine-induced GA and sevoflurane-

induced GA.

We considered a set of 100 spectral-domain, time-domain, and entropy-domain features to 

assess the performance of various classifiers (decision tree, random forest, KNN, subspace-

KNN, and multinomial logistic regression) across an array of hyperparameter choices [9]. 

Through this exhaustive analysis, we found that the KNN classifier, endowed with the city-

block metric, most accurately classified brain-states into our three a priori defined brain-

states: awake, sedated, and GA. The city-block metric—also known as the ℓ1 metric—

emphasizes small component-wise differences [9]. Given a query point q, the KNN classifier 

finds the k points in its training set nearest to q, where distance is defined by the city-block 

metric. It then uses those k points’ classifications to determine the most likely classification 

of q. KNN’s simple construction makes it more interpretable than other common machine 

learning algorithms (e.g. support vector machines and neural networks) [9]. This allows for 

the careful selection of features which are catered to KNN and the problem of separating 

brain-state classes. The KNN algorithm is most successful when the data exists in clusters 

which can be separated by hyperplanes [10]. We defined this separation of clusters as linear 

separation. Linear separation of our classes would give a Bayes error of almost zero such 

that data can be separated with few disconnected components [10].

We extracted two curated lists of features. In the first list, we found seventeen features that 

linearly separated our a priori defined brain-states for the sevoflurane visit. In the second 

list, we found sixteen features that linearly separated our a priori defined brain-states for the 

sevoflurane-plus-ketamine visit. We selected the features that intersected both lists as our 

ultimate feature space (table I). We expected the selected features to differentiate both 

sevoflurane and sevoflurane-plus-ketamine GA from sedation and awake with high accuracy.

Keeping our carefully-selected feature set uniform, we varied the training and testing sets to 

measure the effect of drug-specificity on model performance. Cross-validation was 

performed using a leave-one-subject-out approach, which ensured that models were tested 

on “unseen” data [9]. To find the optimal hyperparameter choice k for our KNN models, we 

performed a grid-search and found the optimum to be k = 6. This optimization occurred 

before any analysis, and there was no further inner loop to vary k. The GA-specific 

(sevoflurane or sevoflurane-plus-ketamine) F1 score was used as our performance metric. 

We defined this metric to the harmonic mean of GA specificity (true-negative rate) and GA 

sensitivity (true-positive rate). We performed ANOVA testing with post-hoc comparisons for 

all model pairs using the Tukey-Kramer Honest Significance Test (HSD). We chose a 

significance threshold of p ≤ 0.05.

III. Results

A. Model Performances

First, we assessed performance when predicting GA in two drug-specific models. The 

performance of a model that was trained and tested on sevoflurane data (model 1) was 0.91 
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[95% CI, 0.84, 0.98], shown in table II. The performance of a model that was trained and 

tested on sevoflurane-plus-ketamine data (model 2) was 0.98, [0.94, 1.00], shown in table 

III. Next, we assessed model performance for a clinically relevant, cross-test model (model 

3)—trained on a single drug-class (sevoflurane) and evaluated on a different drug-class 

combination (sevoflurane-plus-ketamine), shown in table IV. The performance of model 3 

was 0.78, [0.62, 0.95]. In model 3, 10.8% of sevoflurane-plus-ketamine GA was 

misclassified as awake and 26.8% was misclassified as sedated. Fig. 1A illustrates the high 

performance of model 2, which was trained and tested on sevoflurane-plus-ketamine. Fig. 

1B illustrates the lower performance of model 3, which was trained on sevoflurane but tested 

on sevoflurane-plus-ketamine.

B. Statistical Significance Testing

The drug-specific model (model 2) outperformed the cross-test model (model 3) by a margin 

of 0.20, [0.00, 0.39] in the GA-specific F1 score, p = 0.05. Incorporating drug-specific 

training data did not significantly improve the performance on the awake state, which 

increased from model 3 to model 2 only by a margin of 0.03, [−0.07, 0.33], p = 0.27. Model 

2 predicted the awake brain-state with an awake-specific F1 score of 0.99, [0.96, 1.01] and 

model 3 predicted the awake state with an awake-specific F1 score of 0.96, [0.90, 0.99].

IV. Discussion

A. Drug-Specific Brain-State Monitoring

Precisely targeting and maintaining anesthetic states using automated brain-state prediction 

systems is expected to reduce drug overdosage and associated side-effects, especially in 

patients for whom the current models fail such as the elderly or those with critical illnesses 

(i.e., sepsis) or during certain drug-class combinations. Commercially available brain-state 

monitoring systems perform poorly on drug-class combinations. This is likely because the 

models underlying these systems were developed under a one-model-fits-all-drugs 

assumption and trained solely on gabaergic drugs like sevoflurane [3]. In this work, we 

demonstrated improved performance of EEG-based brain-state classification when using 

drug-specific training sets. Importantly, this improvement was feature-independent, as we 

employed a uniform set of eight features across all of the models tested. Thus, a pragmatic, 

drug-specific training approach to models being developed for commercially available 

automated brain-state prediction systems may improve the performance of these systems.

Our finding that EEG data consistent with sevoflurane-plus-ketamine GA were misclassified 

as the awake or sedated brain-states in our cross-test model is consistent with previously 

published literature on the performance of commercially available brain-state prediction 

systems [15]. Sevoflurane at doses consistent with sedation is associated with beta 

oscillations [1]. Sevoflurane-plus-ketamine at doses consistent with GA is also associated 

with beta oscillations (Fig. 1C). We conjecture that EEG-based brain-state prediction 

systems ascribe high sedation and awake state prediction weights to beta oscillations. This 

could be the reason as to why these systems inaccurately misclassify GA states with beta 

oscillations (e.g. in sevoflurane-plus-ketamine) as either awake or sedation.
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B. Study Limitations

Study limitations include the small sample size, narrow age range, lack of comorbidities, and 

single drug-class combination analyzed. EEG dynamics of the anesthetized brain changes 

systematically as a function of age [16, 17] and perhaps, critical illness. Thus, for 

generalizability and improved performance, models that account for various ages, 

comorbidities, and all clinically relevant drug-class combinations are necessary. We 

demonstrated that a drug-specific approach to brain-state monitoring may lead to improved 

performance using a limited set of features. However, model performance could also be 

improved with a more expansive feature set or with feature-independent models such as 

convolutional neural networks. Future studies that compare against a chance classifier may 

provide a better understanding as to whether the complexity of machine learning is 

warranted in the context of our brain-state prediction systems.

V. Conclusion

We conclude that EEG-based automated brain-state prediction systems based on drug-

specific models result in improved performance compared to a one-model-fits-all-drugs 

approach. Improved brain-state monitoring systems are expected to foster widespread 

utilization and guidelines for patient monitoring.
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Figure 1. Performance of model 2 and model 3 in testing sevoflurane-plus-ketamine for an 
illustrative subject:
(A, B, C) Prediction performance of model 2 (top panel), prediction performance of model 3 

(middle panel), and spectrogram of sevoflurane-plus-ketamine visit (bottom panel). 

Increased power in beta oscillations are associated with the administration of ketamine even 

though GA is maintained. Orange lines represent true brain-state classes and blue dots 

represent the class predictions.
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TABLE I.

Feature set

Domain Features

Spectral
Mean slow (0.1-2 Hz) power
Mean theta (4.1-8 Hz) power
Mean low-beta (12.5-15 Hz) power

Time
Instantaneous frequency mean [11]
Instantaneous frequency kurtosis [11]
Hjorth mobility [12]

Entropy Permutation entropy [13]
Higuchi fractal dimension [14]
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TABLE II.

Model 1 – Average confusion matrix

Predicted Class

Awake 1.1%
Sevoflurane

2.1 or 2.8%
Sevoflurane

True
Class

Awake 99.4 % 0.6 % 0.0 %

1.1% Sevoflurane 9.7 % 71.5 % 18.8 %

2.1 or 2.8% Sevoflurane 0.0 % 7.4 % 92.6 %
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TABLE III.

Model 2 – Average confusion matrix

Predicted Class 
b

Awake 2.1%
Sevoflurane

2.1%
Sevoflurane +

Ketamine 
a

True
Class

Awake 100.0 % 0.0 % 0.0 %

2.1% Sevoflurane 6.3 % 71.4 % 22.3 %

2.1% Sevoflurane + Ketamine
a 0.0 % 24.3 % 

c
75.7 % 

c

a.
Subject 8 had missing sevoflurane-plus-ketamine data.

b.
Model 2 was limited by study design in that 1.1% sevoflurane was not administered during the sevoflurane-plus-ketamine visit.

c.
Misclassifications between sevoflurane GA and sevoflurane-plus-ketamine GA were ignored.
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TABLE IV.

Model 3 – Average confusion matrix

Trained Class

Awake 1.1%
Sevoflurane

2.1 or 2.8%
Sevoflurane

Tested
Class

Awake 99.9 % 0.1 % 0.0 %

2.1% sevoflurane 16.4 % 4.2 % 79.4 %

2.1% Sevoflurane + Ketamine
a 10.8 % 26.8 % 62.4 %

a.
Subject 8 had missing sevoflurane-plus-ketamine data.
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TABLE V.

Summary Of Model Performance

Train Data Test Data
Mean GA

F1 score [CI] 
c

Model 1 Sevoflurane Sevoflurane 0.91 [0.84, 0.98]

Model 2 Sevoflurane-plus-ketamine Sevoflurane-plus-ketamine 0.98 [0.62, 0.95] 
a, b

Model 3 Sevoflurane Sevoflurane-plus-ketamine 0.78 [0.94, 1.02] 
a

a.
Subject 8 had missing sevoflurane-plus-ketamine data and thus the mean and standard deviations in model 2 and 3 are performed using 11 

subjects.

b.
Misclassifications between sevoflurane GA and sevoflurane-plus-ketamine GA were ignored.

c.
95% confidence interval.
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