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ABSTRACT 

Parkinson’s Disease (PD) can lead to impaired/slowed 
movement, gait impairments and increased risk of falling. 
Wearable technology-based gait analysis is emerging as a 
powerful tool to detect early disease and monitor 
progression. Here we present a novel approach to 
producing an objective, compact and personalised 
overview of a patients’ gait pattern. Phase plots were 
constructed in 41 people with PD and 38 controls (CL) 
from accelerometry data collected during straight 
intermittent walks with a single triaxial accelerometer 
placed on the lower back. Phase plots were analysed using 
bivariate Gaussian mixture models and classified based 
on several apparent features derived from the parameters 
of said model. Significant differences in phase plot form 
were found between and PD and CL subjects; with a very 
high within-subject consistency (reproducibility) (p < 
0.0001). PD and CL subjects differ in the types of phase 
plots produced (p < 0.001). Strong connections between 
spatio-temporal (ST) gait characteristics and phase plot 
types were found. The presented novel methodology not 
only showed to be sensitive to pathology (PD vs CL), but 
can quickly produce a unique fingerprint of a person’s 
gait. This work presents encouraging results for clinical 
application of an objective, personalised gait feature for 
disease monitoring and clinical applications. 

I. INTRODUCTION 

Parkinson’s disease (PD) is the second most common 
neurological disorder; due to its physical manifestations and 
degenerative nature, PD can lead to impaired/slowed research 
movement, gait impairments and increased risk of falling. PD 
can progress more rapidly if not treated correctly hence the 

interest in new means of accurate objective clinical 
assessment of motor and gait impairments. This led to 
significant research interest in gait analysis for tracking 
disease progression and assessing medication efficacy [1]. 
 Typically, gait analysis is performed using expensive and 
large laboratory systems such as pressure-sensor walkways. 
Advances in wearable technology have led to much smaller 
devices being commercially available and with greatly 
increased battery lives to the degree that prolonged 
accelerometry-based analyses are now practical [2]. Due to 
the complexity of gait and high clinical interest there have 
been a plethora of features have been suggested for gait 
analysis in the literature pertaining to several groups such as: 
spatio-temporal (ST), frequency domain as well as entropy 
measures to detect medication side effects (e.g. dyskinesia’s) 
[3]. A subset of these has been proposed and validated by the 
BAM group as a comprehensive model of gait [4] which 
comprising five factors: pace, rhythm, asymmetry, variability 
and postural control, each with 3-4 features e.g. mean step 
velocity, step length variability etc. Novel gait features 
typically require scripted tasks for valid extraction or are 
associated with a minimum epoch of recording [5]. Both 
requirement put limitations the utility of their respective 
features and restrict their use in free-living environments. 
 Many features relating to the gait cycle (Fig. 1(a)) and 
have been identified as reliable biomarkers for PD [9, 7]. The 
asymmetric features of gait are of particular clinical interest 
in studies such as this as the asymmetric nature of PD, 
specifically the degree thereof, can be taken as a good 
biomarker for disease progression. In this context, phase plots 
offer an excellent means of gait assessment because they 
capture gait asymmetry (e.g. component angle 𝛼𝛼)  from a very 
short bout of gait / quiet walking. I.e. No unreasonable 
minimum epoch or scripted tasks are required to elicit a 
comprehensive phase plot [8].  
 In this piece, we present a means of exploiting the cyclic 
nature of gait to develop a compact fingerprint of a subject’s 
gait using phase plot analysis. This will allow for tracking of 
changes in the disease through monitoring of the subtle 
changes in locomotion. Most importantly, this will be 
achievable on a per patient basis. The presented phase plot 
analysis offers a very compact means of assessing explaining  
deviations of PD gait from regular harmonic and sinusoidal 
motions in the context of disease state. 
 The aims of this work were therefore to (i) demonstrate 
the potential of phase plots as a sensitive tool to discriminate 
pathology (PD vs control group); (ii) explore the validity of 
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phase plots for presenting a compact and comprehensive 
overview of a person’s gait; and (iii) to assess the relation 
between features of phase plots to known/ gold-standard ST 
features of gait. 

II. METHODS 

A. Participants 

41 PD patients within 4 months of diagnosis and 38 
healthy aged matched control subjects (CL) were recruited 
from the Incidence of Cognitive Impairment in Cohorts with 
Longitudinal Evaluation—GAIT (ICICLE-GAIT) study. 
This is a collaborative study with ICICLE-PD, an incident 
cohort study (Incidence of Cognitive Impairment in Cohorts 
with Longitudinal Evaluation—Parkinson’s disease) 
conducted between June 2009 and December. This study was 
conducted according to the declaration of Helsinki and had 
ethical approval from the Newcastle and North Tyneside 
research ethics committee. All participants signed an 
informed consent form prior to testing. 

  
B. Equipment and protocol 

Each participant was asked to wear a low-cost tri-axial 
accelerometer-based wearable device (Axivity AX3, 100Hz, 
±8g) located on the fifth lumbar vertebrae (L5). Participants 
were asked to walk at their preferred speed, performing four 
intermittent straight-line walking trials over 10m walkway; a 
7m instrumented walkway (GAITRite/ gold standard) was 
placed in the centre to ensure gait was captured at a steady 
speed. PD participants who were on medication were tested 
approximately 1 hour after medication intake. 

C. Data Analysis 

The data were downloaded to a computer, segmented into 
the four different straight-line passes using time stamps and 
analysed by the MATLAB® program. Accelerometer signals 
were transformed to a horizontal-vertical coordinate system 
and filtered with a low-pass fourth order Butterworth filter at 
20 Hz. 

D. Algorithms 

Phase Plot construction: For consistency, we define the 
three accelerometer signals as x1, x2 and x3 representing the 
medio-lateral, anterior-posterior, and longitudinal (vertical) 
axis respectively. Many gait analysis studies include some 
form of bout detection as a pre-processing stage before 
individual steps and gait events such as initial contacts (ICs) 
are extracted. Such methods typically incorporate 
information all three orthogonal axes. However, the lab-
based data was annotated with bout beginning and end times 
thus simplifying the process. 

Step detection was carried out using methods outlined by Del 
Din et al [9] based on peak detection of the filtered vertical 
acceleration signal. Vertical excursion of the centre of mass 
was calculated using double integration methods similar to 
those described by Esser et al [8]. However, here numerical 

integration was carried out piece-wise on IC-to-IC intervals 
of the vertical acceleration signal and included a detrending 
step to the intermediate velocity signal. Finally, concatenation 
& phase shifting. Following piecewise integration, the full 
vertical excursion signal must be restored via concatenation 
of the resultant integrals. Here the phase shift is introduced. 
We restore two such vertical excursion signals one of which 
is exactly one step cycle lagged behind the other i.e. 𝑃𝑃1(𝑡𝑡) =
𝑃𝑃0(𝑡𝑡 − 𝑛𝑛) where n is the number of data points comprising a 
step interval in the vertical excursion signal and 𝑃𝑃1 and 𝑃𝑃0 are 
the lagged and original vertical excursion signal respectively. 

E. Statistical analysis  

Phase plots generally take the form of two clusters of 
ellipses. This led us to approximate them according to a 
multivariate Gaussian mixture model i.e. the weighted sum of 
two bivariate Gaussian densities. In the first instance, we can 
classify the phase plots according to which order of as a 
Gaussian mixture model best approximates the data therein. 

 

 

Figure 1. (a) Gait cycle. (b) Raw vertical acceleration (black) & 
Butterworth filtered (blue). (c) Vertical CoM (centre of mass) excursion: 
original (black) and Phase shifted one step cycle (green). (d) Resultant 
phase plot with fitted Mixture bivariate Normal (Blue/Red). 
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Most plots can be approximated a Gaussian mixture model of 
order one or two, (Fig. 3D) i.e. they can be generally 
represented as one or two clusters of ellipses. One subject 
(excluded from study) produced an order three-phase plot, 
likely stemming from an atypical change in walking style 
during the short bout and was excluded from further analysis. 
Phase plots of order two are further classified into one of three 
subtypes each distinguishable by the relative form the two 
Gaussian components. Each type is intuitively named (Fig. 
3): Single line (SL), Parallel wings (PW), Oblique wings 
(OW) and Thin line double (TLD).  Thresholding values of 𝛼𝛼 
= 20o, D = 1.3, and EVR = 2, where EVR is the ratio of the 
major and minor component ellipse axes, were chosen to 
discriminate most accurately between each of the four 
proposed plot types based on the defining features of each e.g. 
𝛼𝛼 chosen to ensure clear divergence of component directions. 
 Phase plots are constructible from a relatively small data 
sample- approximately 10 gait cycles (Fig. 1(a)). We have 
observed very high consistency within multiple phase plots 
of a given patient’s gait. This reproducibility paired with the 
low data requirement (approximately 15-20 steps’ worth of 
accelerometry data) means this method is highly 
generalisable. Another benefit of this method is that only a 
single axis of acceleration is required (vertical). Although, 
popular methods of bout extraction and other necessary pre-
processing steps often require other axes’ data. For example, 
Lyons et al [9] used pooled (three axis) SD of the signal to 
detect periods of motion.  
 To explore the physical interpretation of different phase 
plot types, the following five ST features, were evaluated for 
all PD subjects Step length, Step length asymmetry, step time 
variability, step velocity, and step velocity variability SD. 

III. RESULTS 
Table I. Participant Demographics and Characteristics  

 
Participant demographic, clinical and cognitive descriptors 
are shown in Table I. Compared to CL, PD Participants were 
aged matched; included proportionally more women (CL: 
90%, PD: 46.4%); no differences were found between groups 
for BMI. Participants with PD were in the early stages of the 
disease with mild motor symptoms.  
 PD and CL subjects’ show significantly different 
tendencies in all three defining features of given in figure 2 
(p < 0.05). Very high within subject consistency was 
observed (p < 0.001) - for a given subject, their three phase 
plots would generally be very similar in type (Fig. 3) but also 
in terms of finer details. Indeed, there appeared to be great 
deal of unique detail in each subjects’ phase plot. Consistency 
of plot type production was assessed after the classification 
shown in (Fig. 2) by comparison with randomly assigned 
types. The distribution of Types among both cohorts’ phase 
plots is also significantly different. CL subject generally 
produce single line (SL) type plots (90%). We found that 
several combinations (pairings) of plot types which represent 

significant changes in specific SP characteristics (Table II). 
 

Table II. Spatio-temporal features for PD subjects. †most significant two p- 
values of the six possible pair comparisons. 

 
IV. DISCUSSION & CONCLUSION 

It is well established that sensor-based gait assessment is 
a reliable avenue [9] for PD monitoring, particularly in home 
environments. Pairing this with the ability of phase plot 
analysis to produce a comprehensive snapshot of gait, we 
present the possibility of fine-scale monitoring of PD 
progression and in the home environment. 

Phase plot analysis satisfies key requirements for wide-
scale deployment and clinical assessment: 1) results are 
objective, 2) Derivable from a single discreetly worn device 
and 3) very low demand on time and data- it can be 
implemented on a relatively small data set. We deduce from 
table II that a transition from TDL to PW correlates to 
significant increases in both step length and velocity which 

 

Characteristic PD (N = 41) CL (N = 38) P 
Age (years) 66.7 ± 9.7 68.1 ± 7.3 0.23 

Gender (M/F) 13/28 18/20 <0.05 
Hoehn &Yahr 

Stage (H-Y) 
I(12),II(27), 

III(2) 
- - 

BMI (Kg/m2) 28.4 ± 5.03 28.17 ± 4.18 0.44 

Type/ 
feature 

SL TDL PW OW p† 

Step 
Length (m) 

0.636 
±0.080 

0.552 
± 0.122 

0.721 
±0.026 

0.729 
±0.056 

TDL vs PW  
0.02 

SL vs PW  
0.047 

Step 
Length 

Asymmetry 
(m) 

0.0275 
±0.023 

0.0275 
±0.021 

0.0405 
±0.02 

0.0597 
±0.01 

TDL vs OW  
0.128 

SL vs OW 
0.186 

Step Time 
Variability 

(s) 

0.0177 
±0.005 

0.0202 
±0.006 

0.0115 
±0.002 

0.0149 
±0.004 

SL vs PW 
0.063 

TDL vs PW  
0.026 

Step 
Velocity 

(ms-2) 

1.16 
±0.195 

 

0.974 
±0.249 

 

1.42 
±0.071 

1.52 
±0.138 

 

TDL vs PW 
0.0079 

SL vs PW 
0.0388 

Step 
Velocity 
Var SD 
(m2s-4) 

0.063 
±0.024

2 
 

0.074 
±0.022 

 

0.085 
±0.056 

0.0701 
±0.017 

 

SL vs TDL  
0.316 

SL vs OW 
0.664 

 

 

Figure 2. Phase plot classification algorithm. 𝜶𝜶 is the angle between both 
components, D is the Euclidean distance between both component 
centroids, EVR is the ratio of the major and minor component ellipse axes. 



 
TABLE III. Mixture Model Derived Features and Classifications. 

 PD CL p 
No. bouts 117 100  

Component 
angle, α (o) 

12.9o ± 12.1o 8.9o ±11.4 o 0.014 

Area ratio 1.21 ± 0.22 1.34 ± 0.37 0.0018 
Component 
distance (D) 

0.847 ± 1.16 0.45 ± 0.41 0.0007 

Type – SL  80 89 0.0002 
Type – PW 11 3 0.093 
Type - TDL 23 7 0.0095 
Type – OB 3 1 0.63 
Order – 2 37 11 0.0002 

 
reliably measure physical capability [9]. One might 
intuitively hypothesise that transitions to SL (most common 
subject type) would represent positive changes in ST 

characteristics. However, our results imply that walking with 
such a gait pattern as to produce a PW type phase plot as 
opposed to SL can result in improved gait parameters for PD 
subjects. 
 We showed that PD and CL subjects have significantly 
different tendencies in all three defining features of phase 
plots, this supports the utility of phase plot analysis as a tool 
sensitive to pathology (PD vs CL) and as a potential 
supplementary diagnostic tool.  
 The high within-subject consistency of phase plots 
features means that phase plots features can represent a 
compact and comprehensive overview of a person’s gait. This 
leads us to adopt the fingerprint interpretation of phase plots 
to reflect their specificity not only to a given subject, but also 
to the state of their condition (PD in this case) at the time of 
recording. 
 Strong relationships between features of phase plots and 
ST features of gait were found. We identified several 
transitions of phase plot types which represent significant 
changes in specific ST characteristics, thus helping the 
interpretation of phase plot features by linking them to well-
known gait characteristics. Future work should aim to utilise 
other axes of acceleration to producing higher dimensional 
phase plots while taking care not to impede the 
interpretability of the output. Connections between phase plot 
characteristics and PD phenotypes should also be 
investigated. Due to the form of the data, an elliptical 
parameterisation of phase plots may be appropriate.  
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Figure 3. Example Phase Plots types for PD and CL subjects. (a) SL 
(Single Line), (b) TDL (Thin double line), (c) PW (Parallel wings), (d) 
OW (Oblique wings). 
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