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Abstract— We propose a Deep Convolutional Neural Network
(CNN) architecture for computing a Compensatory Reserve
Metric (CRM) for trauma victims suffering from hypovolemia
(decreased circulating blood volume). The CRM is a single
health indicator value that ranges from 100% for healthy
individuals, down to 0% at hemodynamic decompensation –
when the body can no longer compensate for blood loss. The
CNN is trained on 20 second blood pressure waveform segments
obtained from a finger-cuff monitor of 194 subjects. The
model accurately predicts CRM when tested on data from 22
additional human subjects obtained from Lower Body Negative
Pressure (LBNP) emulation of hemorrhage, attaining a mean
squared error (MSE) of 0.0238 over the full range of values,
including those from subjects with both low and high tolerance
to central hypovolemia.

I. INTRODUCTION

Hemorrhage is the leading cause of death from trauma
[1]. Early intervention to prevent hemodynamic collapse is
complicated by physiologic mechanisms that compensate for
blood loss, maintaining, or nearly maintaining standard vital
signs such as systolic blood pressure despite ongoing blood
loss. New metrics of health status for trauma victims are
required to enable timely and effective treatment, particularly
when medical resources are limited and patients triage must
be prioritized.

To study hemodynamic compensation, a human model of
hemorrhage was developed using a technology called Lower
Body Negative Pressure (LBNP), in which the lower half
of a healthy test subject’s body is placed into a pressure
chamber and subjected to negative atmospheric pressure [2].
Blood is drawn to the lower extremities, reducing central
blood volume and emulating hemorrhage. When negative
pressure is released, the subject quickly recovers. LBNP
studies of hypovolemia have led to the development of the
concept of Compensatory Reserve [3] describing the body’s
ability to compensate for blood loss. Compensatory Reserve
is reported as 100% reserve for healthy individuals, down to
0% reserve at the point of hemodynamic decompensation.

In this paper we present the development of a computa-
tional model for estimating a Compensatory Reserve Metric
(CRM) from blood pressure waveforms based on Deep
Convolutional Neural Networks (CNNs). Unlike techniques
that require significant feature engineering, painstakingly
extracting dozens [4] or hundreds or even thousands [5] of
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biological or statistical parameters from waveforms , deep
CNNs automatically learn the relevant features from the
waveforms themselves. While CNNs have been amazingly
successful in recent years at image analysis [6], they are
notorious for having a voracious appetite for training data.
It is worth noting that this technique develops an effective
CRM model from a dataset of only 222 human subjects.

II. METHOD
A. LBNP Experimental Data

The LBNP dataset was provided by the U.S. Army In-
stitute of Surgical Research (USAISR) under a protocol
approved by the Institutional Review Boards (IRBs) of both
the USAISR and the Mayo Clinic. The dataset included
physiologic recordings of 16 different signals from 222
subjects undergoing the LBNP protocol. Data for all sub-
jects included continuous measurements of heart rate (HR)
obtained from a standard lead-II electrocardiogram (ECG),
peripheral capillary oxygen saturation (SpO2) obtained using
a Near Infrared Spectroscopy (NIRS) system, capnogram
(or end tidal CO2), the applied negative pressure in mmHg,
and beat-to-beat systolic (SBP) and diastolic (DBP) blood
pressures, measured noninvasively using an infrared fin-
ger photoplethysmograph (PPG; Finometer R© Bood Pressure
Monitor, TNO-TPD Biomedical Instrumentation, Amster-
dam, The Netherlands). The Finometer R© blood pressure cuff
was placed on the middle finger of the left hand, which was
laid at heart level and calibrated with a standard manual
brachial blood pressure cuff. Recordings ranged from 9 to
60 minutes in duration with data acquired at 500 samples
per second.

The experimental protocol applied progressively stepwise
LBNP while subjects were in a supine position. LBNP
experiments began with five minutes of baseline recording,
without application of LBNP (i.e., 0 mmHg), followed by
five minute periods with chamber pressures set at −15, −30,
−45, and −60 mmHg, with additional decreases of −10
mmHg every five minutes until the onset of hemodynamic
decompensation. In accordance with the IRB, the maximum
level of LBNP exposure wast 5 minutes at −100 mmHg.
No subject completed five minutes at −100 mmHg (i.e., all
subjects reached hemodynamic decompensation). For each
subject, the end point of the experiment was defined at the
point of decompensation, i.e., identified as systolic arterial
pressure (SAP) < 80 mmHg (class III shock) concurrent
with reporting of symptoms such as bradycardia, gray-out
(loss of color vision), tunnel vision, sweating, nausea, or
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dizziness. Upon reaching this endpoint, the chamber vacuum
was immediately released to ambient pressure, returning
the subject to their baseline physiological status by rapidly
restoring the central circulatiing blood volume.

The top panel of Figure 1 shows the applied LBNP and
continuous systolic blood pressure recordings obtained from
the Finometer R© over the duration of the experiment for one
subject. The inclusion of SBP highlights the need for the
development of this algorithm. Shock is usually described
clinically by severe hypotension, or SBP < 90 mmHg [7],
though using this metric and similar standard vital signs
can be misleading to the process of diagnosis. The figure
shows that SBP remains within normal clinical values over
the course of progressive central hypovolemia because it is
tightly regulated by various compensatory mechanisms. It
is therefore obvious that if the progression of hypovolemia
is not arrested, the reserve to compensate is depleted and
decompensation occurs. At decompensation, the SBP plum-
mets, signaling the exhaustion of compensatory feedback
mechanisms. It is clear from the recording in Figure 1 that
tracking a signal that represents the underlying compensatory
response provided by the CRM algorithm developed in this
paper, a signal that changes immediately at the onset of
blood loss, will avoid delays in recognition of the impending
“crash” of SBP.

We selected 216 subjects with complete Finometer R©

waveform recordings for this model development. Although
no demographic information was available, we know from
the LBNP experimental results that the subjects were a
mixture of high tolerance and low tolerance individuals
[8], [2], where low tolerant individuals fail to complete
the LBNP protocol through -60 mmHg and high tolerant
indidividuals do complete this step. The machine learning
algorithm developed in the following sections automatically
accounts for high and low tolerance by predicting CRM as
a percentage of the subject’s individual tolerance.

B. Machine Learning Framework

We created a software framework for managing experi-
mental data and running machine learning experiments. The
216 subjects were divided into training and test sets of 194
and 22, respectively. Defining training and test in terms of
individual subjects is necessary, as we have observed over
fitting (high variance) in cases where validation waveforms
were selected from the pool of all subjects. Machine learning
regression algorithms were trained to estimate CRM, in the
range of 100% at baseline down to 0% at decompensation,
from blood pressure waveform samples.

Supervised training of a regression algorithm to estimate
CRM requires a training target, which must be calculated
from the experimental data. Compensatory reserve cannot be
directly measured, but we can define CRM training targets
from the experimental data, defining the subject’s CRM as
100% during the first five minutes of baseline recordings
(i.e., LBNP of 0 mmHg) and defining CRM as 0% at the
point of decompensation. This percentage represents the
abstract concept of an individual subject’s remaining capacity

Fig. 1. Linear and Step Training Target Calculations for Subject A157

to compensate, or the capacity to protect against central
hypovolemia, such that the reserve to compensate can be
defined as the difference between the maximal response and
the baseline state [9]. This exploits a key feature of this
experimental dataset, in which all subjects were taken to
the point of decompensation, discovering their individual
tolerance to LBNP. With the endpoints defined, we can
properly label each point in time with a target CRM for
supervised machine learning. We can model decreasing CRM
either as a linear function over the duration of the LBNP
experiment, or as a series of steps corresponding to the
applied LBNP. As an example, linear and stepped training
targets for subject A157 are plotted in the bottom panel of
Figure 1, along with the corresponding applied LBNP and
SBP in the top panel. The point of decompensation at 28.9
minutes was derived from the release of LBNP. Note that the
model is trained only on data before decompensation, as the
target CRM is not known during recovery.

Once the endpoint and training targets were defined,
the recorded Finometer R© waveforms were truncated to the
experiment length and divided into equal segments. Segments
lengths of 20 seconds captured several heart beats and
respiration cycles. Each waveform segment was associated
with a step-wise CRM training target, as well as the subject
identifier and a binary flag marking the point of decompen-
sation. The last two were required for post-training analysis
to compute area under the receiver operating characteristic
curve using the Generalized Estimating Equation approach
(GEE) [10].

The resulting training data included 30,075 training sam-
ple waveforms and 3,290 testing samples, based on the
194 and 22 subjects in the respective training and test sets.
As each waveform sample is a one-dimensional time series
data structure, 1-D Convolutional Neural Networks (CNNs)
were trained using 90% of the training data, reserving 10%
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for validation, which drove architecture selection. The loss
function was mean squared error (MSE) comparing the
predicted CRM to the training target for each waveform
segment. Once a “good” architecture was found, it was re-
trained on the entire training set and its fitness was evaluated
with the reserved test data.

C. CNN Architecture Selection

Convolutional Neural Networks were trained and tested
using Python and Keras, with the Tensorflow back end.
The Keras library enabled relatively simple demonstrations
of modestly complex CNN models that performed well for
predicting CRM from LBNP blood pressure waveforms. A
number of hand crafted models were evaluated, with varying
numbers of convolutional layers, max pooling and dropout
layers, with varying success.

However, the best architectures for 1-D CNN analysis of
biologic waveforms are not obvious. In order to explore a
number of possible architectures, we employed the hyperopt
package [11] to find good values for the number of layers,
numbers of filters, kernel sizes, and other parameters. Hyper-
opt is a Python library for optimizing over awkward search
spaces with real-valued, discrete, and conditional dimen-
sions. We chose Tree of Parzen Estimators (TPE) to explore a
high dimensional parameter space, where discrete parameters
could be random choice or random integer, and real-valued
parameters could be derived from uniform or log, normal,
or log-normal distributions. The layers and characteristics of
the CNN were defined in terms of a hyperspace of these
parameters, employing the layer stack shown in Figure 2.

First Convolution Layer

Conv/Pool Layer 1

Conv/Pool Layer 2

Conv/Pool Layer 3

Fully Connected (FC) Layer

Second FC Layer

Linear Layer

Conv/Pool Layer n

Input Waveform

Fig. 2. Parameterized Layer Structure of Convolutional Neural Network

The first convolutional layer was defined separately from
the other layers, as it must adapt to specific characteristics of
the waveform data, and may have different kernel size and
stride from the rest of the model. The bulk of the network
is a block of convolutional/pooling layers, with the same
kernel size and stride, and an increasing number of filters
for each layer. Within this group, the convolution layer is
followed by optional batch normalization [12], an optional

residual layer [13], then parameterized pooling and dropout.
The convolution layer group was followed by one or two
fully connected layers and a final linear unit to compute
CRM. Global model parameters included learning rate, L2
regularization factor, batch size, choice of optimizer, dropout
probability, pooling type, and activation function.

Approximately one thousand candidate architectures were
trained for 100 epochs and evaluated using mongodb for
parallel execution on a Cray Urika GX supercomputer. It
was clear from evaluating the results that several parameters
should be fixed, and not subject to further optimization.
For example, the swarm plot in Figure 3 has one point
per trial, , grouped by pooling type, and shows that the
optimizer developed a preference for max pooling over
average pooling. This preference was validated by examining
the training loss scores grouped by pooling type. It was
also determined that batch normalization should always be
included, the ‘Nadam’ optimizer should be used, and the
activation function should always be the Rectified Linear
Unit (relu).
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Fig. 3. Pooling type chosen by hyperopt over 1,000 trials, indicating a
strong preference for “max” pooling

The hyper parameter search space was modified according
to the results of the first thousand trials, and an additional two
thousand candidate architectures were evaluated. From those
evaluations, the 120 architectures with the best validation
scores were analyzed to select the best overall hyperparame-
ters. From that analysis, we derived a CNN architecture from
parameters in Table I

TABLE I
HYPER PARAMETER VALUES FOR CRM CNN

Parameter Value
First Conv Layer Filters 12
First Conv Layer Kernel Size 6
First Conv Layer Pool Size 4
Number of Conv/Pool Layers 7
Conv Filters Start 6
Conv Filters Multiplier 1.50
Conv Kernel Size 12
Conv Pool Size 3
Residual Layers None
FC Layer 1 Units 565
FC Layer 2 Units 517
L2 Weight Regularization 0.00037
Learning Rate 0.000135
Batch Size 100
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III. RESULTS

The resulting Convolutional Neural Network was recon-
structed using Python and the Keras library. The model was
re-trained on the entire training set of 194 subjects and
30,075 waveform samples for 200 epochs to produce a CRM
model with MSE of 0.0236 and R2 score of 0.8670. The
CRM model was run on the test data of 22 subjects and
3,290 waveform samples to produce CRM scores for those
LBNP experiments. The predictions were compared to the
target CRM scores for the test subjects, yielding an overall
MSE of 0.0238 and R2 score of 0.8903. Predicted CRM
and the stepped target CRM are plotted in Figure 4 for
two test subjects; one high tolerance and one low tolerance.
In this example, the low tolerance individual is distinctly
different in his/her time to decompensation, compared to
the high tolerage individual (25 vs 70 minutes, respectively).
The CRM closely matches the stepped target, as would be
expected from the low error score. Computed CRM for the
high tolerance subject (A042) shows several spikes, both
positive and negative, shortly after changes in LBNP. We
found that these anomalies in the CRM were not caused by
algorithm instability, but were in fact related to anomalies
in the blood pressure waveform recordings, such as the one
shown in Figure 5, during the baseline recording phase of
the LBNP experiment. It is not clear from the waveform
data if this anomaly is a true reflection of the subject’s
physiology, or if it was an artifact of the instrumentation and
data collection, but it is clear that the algorithm can detect
sudden changes in the blood pressure waveforms, whatever
the cause.

Fig. 4. Computed CRM compared to Stepped Training Target for One
High Tolerance Subject (A042 - top panel) and One Low Tolerance Subject
(A243 - bottom panel)

We applied the Generalized Estimating Equation method
(GEE) to produce a Receiver Operating Characteristic (ROC)
area under the curve (AUC) for the point of decompensation
of 0.8910, as shown in Figure 6. This ROCAUC produced
by the 1D CNN of the present study compares favorably
with ROCAUCs generated from a previous machine-learning

Fig. 5. Anomaly in Finometer R© Blood Pressure Waveform for Subject
A042 at 72 Seconds

algorithm of 0.90 for predictions of decompensation in an ex-
perimental human model of progressive central hypovolemia
[14], [15], 0.79-0.83 for bleeding trauma patients [16], [17],
[18], and 0.81-0.90 in humans with controlled blood loss
[19], [20], [21]. This metric focuses only the CRM algorithm
performance at the single point of decompensation, while
the mean squared error (MSE) computed over the entire
experiment is indicative of algorithm performance during a
progressive hypovolemic episode.

Fig. 6. Receiver Operating Characteristic (ROC) Curve for CRM Prediction
of Decompensation Event. Area Under the Curve (AUC) = 0.8910

IV. CONCLUSIONS

A CNN model has been developed to compute Com-
pensatory Reserve Metric in real time from blood pres-
sure waveforms collected via Finometer R© finger cuff. The
CNN architecture was defined by parameters derived from
thousands of candidate model trials. Performance of the
model is robust compared to other techniques, and did not
require extensive feature engineering. Further, this algorithm
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is accurate for distinguishing subjects with low tolerance
from subjects with high tolerance to central hypovolemia.

Future efforts will focus on demonstrating this model’s
accuracy, sensitivity and specificity on new data collected
under different human experimental protocols as well as
patients with a variety of conditions that will allow for
“teaching” the algorithm to be diagnostic. We also will
evaluate techniques for optimizing the algorithms to enable
deployment in laboratory and clinical settings, as well as
portable devices for field applications.
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