
Abstract— The existing adaptive basal-bolus advisor (ABBA) 

was further developed to benefit patients under insulin therapy 

with multiple daily injections (MDI). Three different in silico 

experiments were conducted with the DMMS.R simulator to 

validate the approach of combined use of self-monitoring of 

blood glucose (SMBG) and insulin injection devices, e.g. insulin 

pen, as are used by the majority of type 1 diabetes patients 

under insulin therapy. The proposed approach outperforms the 

conventional method, as it increases the time spent within the 

target range and simultaneously reduces the risks of 

hyperglycaemic and hypoglycaemic events. 

I. INTRODUCTION 

Type 1 diabetes (T1D) is caused by the destruction of 
pancreatic beta cells and is a metabolic disease characterised 
by high levels of blood glucose (hyperglycaemia). If they are 
to maintain their glucose levels within a healthy range (e.g. 70 
md/dl to 180 mg/dl), type 1 diabetic patients need external 
insulin delivery to compensate for the increase in blood 
glucose, especially due to the intake of carbohydrates (CHOs). 

There are three important and essential steps in achieving 
appropriate regulation of blood glucose, i.e. a) monitoring 
blood glucose, b) calculation of the required amount of 
insulin, and c) delivery of the insulin dose. With developments 
in technology, more and more approaches for glucose 
monitoring have become available, e.g. SMBG (also known as 
the blood glucose meter, BGM), continuous glucose 
monitoring (CGM) systems, and flash glucose monitoring 
(FGM) [1], [2]. SMBG is the conventional and most widely 
used glucose monitoring device, and measures the blood 
glucose level with one drop of finger blood. According to the 
NICE guideline [3], type 1 diabetic adults are recommended to 
test glucose levels at least four times a day, i.e. before each 
meal and before going to bed. CGM devices can provide 
glucose measurements every few minutes, by using a 
subcutaneous miniaturised sensor and wireless 
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communication between the sensor and the mobile devices. 
Recently, FGM device is a hybrid between meters and CGMs, 
and has attracted recent attention. As described in [1], FGM 
uses a sensor implanted in the arm that a user (health care 
provider or patient) scans with a specialised reader to record 
glucose levels, trends, and patterns. In contrast to CGM, FGM 
only provides a trend graph if it has been swiped in the 
preceding eight hours, and there is no possibility of generating 
real time glycaemia alarms [4]. 

The insulin pen and the continuous subcutaneous insulin 
infusion (CSII) pump deliver insulin to diabetic patients. The 
corresponding insulin therapies are designated as “multiple 
daily injections (MDI) therapy” and “insulin pump therapy”, 
respectively. Total insulin normally consists of basal insulin 
and bolus insulin [5]. The former maintains blood glucose 
during the fasting period, while the latter compensates for the 
increase in blood glucose caused by CHO intake. For the 
conventional insulin pen user, long-acting insulin is used for 
basal insulin, and short or rapid insulin for bolus insulin. With 
the CSII pump, only rapid insulin is used. However, 
depending on the infusion rate, the infused insulin can be 
designated as either the “basal rate” (BR, very low infusion 
rate during the whole day) or bolus dose (fast infusion rate, 
before meals) [6].  

The patient-specific values of basal insulin and CIR 
(CHO-to-insulin ratio, calculation of the size of the bolus) are 
initially given by the healthcare specialist. Then, the values 
can be updated by different approaches, based on the blood 
glucose concentration of the patients. Zisser et al. [7] 
demonstrated clinically that run-to-run (R2R) control can be 
used to manage meal-related insulin in subjects with T1D.  In 
[8], the authors introduced an R2R algorithm, which used only 
post-prandial blood glucose measurements to adjust bolus 
insulin. The system remained stable, but with large uncertainty. 
Then, the R2R algorithm was applied to use 5 glucose 
measurements as input to successfully adjust basal insulin [9]. 
Some other studies used CGM measurements as the inputs for 
control algorithms. For instance, Herrero et al.  introduced a 
novel method based on case-based reasoning and an R2R 
algorithm for automatic adjustment of the bolus calculator 
[10], [11] and for adaptation of basal insulin [12]. Toffanin et 
al. introduced an R2R algorithm for basal insulin adaptation, 
and this exhibited good performance and stability on a 
population of 100 virtual diabetic adults [13]. In [14] and [15], 
the authors proposed adjusting the bolus and basal insulin 
simultaneously. 

In the aforementioned studies, either CGM or a CSII pump, 
or both were required. In comparison to SMBG, the CGM 
device provides many more glucose measurements per day to 
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monitor the glucose concentration. The CSII pump enables 
easy adjustment of the insulin infusion rate during the day, 
which is not possible by using an insulin pen. This advantage 
is especially meaningful for basal insulin infusion, since 
different basal rate profiles can be implemented with the CSI 
pump. However, since the majority of diabetic patients use 
SMBG or an insulin pen [16]–[18], algorithms for insulin 
adjustment should also be investigated for these approaches. 

 In the previous study [19], we introduced an algorithm 
based on reinforcement learning for the automatic adjustment 
of BR and CIR, in the context of the artificial pancreas (AP), 
which used a combination of CGM and the CSII pump. In the 
continuation of this study [20], the adaptive basal-bolus 
algorithm (ABBA) was optimised in various respects, 
including the capability to use four SMBG measurements per 
day as system inputs. As a further extension, in the present 
study, we investigate whether it is possible to apply the 
algorithm with the combination of SMBG device and insulin 
pen. The current preliminary in silico work was conducted on 
T1D patients, but may also be used for type 2 diabetes (T2D) 
patients. 

II. METHODOLOGY 

In this section, we present the method of the adaptive 
basal-bolus advisor based on reinforcement learning, which 
works with SMBG devices and the insulin pen. The baseline 
bolus advisor is also introduced. 

A.  Bolus Advisor 

The Bolus Advisor (BA) uses a simple algorithm to 
support the diabetic patient in deciding the amount of 
meal-related insulin, i.e. bolus insulin.  Usually, the bolus 
amount provided by BA contains two parts: the meal insulin 
part and the correction insulin part [21]. The former is directly 
calculated from the estimated CHO amount and the CIR 
value, while the latter is an adjustment of the meal insulin part 
based on the current blood glucose level. The algorithm of a 
BA can be described as: 

 Bolus insulin = Meal insulin + Correction insulin () 

 Bolus insulin = CHO/CIR + (BG – Target)/CF () 

where BG is the current blood glucose value, Target is the 
target glucose value, and CF is the correction factor. Both 
CIR and CF are subject-specific metabolic parameters, which 
are given by the healthcare specialist on the basis of their 
estimation. 

B.  ABBA for SMBG and MDI therapy 

In our previous study [20], a dual model adaptive 
basal-bolus advisor (ABBA) was introduced and the 
mathematical details were described. ABBA can use either 
CGM or SMBG measurements as system input. The output of 
the system, i.e. basal rate and bolus insulin, was delivered by 
a CSII pump. In this case, the basal insulin was slowly infused 
as a flat profile during the whole day, and the bolus insulin 
was infused in the course of 5 minutes.  

In the case of MDI therapy, e.g. with the insulin pen, two 
main differences were considered for modifying the 
algorithm, a) instead of a infusion rate, basal insulin needed to 

be injected once per day, b) both basal insulin and bolus 
insulin were injected within a short time.  

Thus the following calculation was applied to convert the 
basal rate, as calculated with ABBA, into the proper amount 
of long acting insulin for a single injection: 

 Basal insulin = basal rate * 1440, () 

where 1440 is the number of minutes in one day. On the other 
hand, it was no longer necessary to divide the total bolus 
amount by the infusion duration, e.g. 5 minutes, since the 
whole bolus insulin needs to be injected together. In this 
study, the injection time for both basal insulin (long acting 
insulin) and bolus insulin (rapid insulin) was one minute.  

The Transfer Entropy (TE) method for initialisation [22] 
was not applied, since pump therapy was required for the latter 
method. Thus, the control policy was initialised to 0.5, which 
is the mean value of its range (0.1).  From the point of view of 
the algorithm, the rest of ABBA remained the same as 
described in [20]. 

III. EXPERIMENTAL PROTOCOL 

This section describes the experimental protocol, which 
means the simulation environment, experiment scenarios, 
meal protocol, etc.. 

A. Simulation Environment 

The Diabetes Mellitus Metabolic Simulator for Research 
(DMMS.R) was used to evaluate the aforementioned 
algorithm. The DMMS.R simulator is a computer application 
designed for conducting clinical studies in virtual subjects 
[23]. In contrast to the Type 1 Diabetes Metabolic Simulator 
(T1DMS) [24], the newly released DMMS.R simulator 
provides more cohorts of in silico subject population (i.e. 
T1D, T2D or Pre-Diabetes). Furthermore, besides rapid-acting 
insulin, DMMS.R also supports simulation with long-acting 
insulin or oral medications, which introduces more 
possibilities by using different treatments for the in silico 
experiments. To the best of our knowledge, this is the first 
published study of in silico evaluation to be conducted with 
the DMMS.R simulator for diabetic patients with the SMBG 
device and MDI therapy.  

In this study, the 10 virtual adult subjects of T1D cohort 
provided by the DMMS.R simulator were used for simulation. 
The blood glucose levels were measured by the virtual SMBG 
device. Long-acting insulin and rapid-acting insulin were used 
to reflect insulin treatment for insulin pen users.  

B.  Experimental scenarios  

The total duration of the in silico experiments was 15 days. 
The first day was excluded from the evaluation, since the 
insulin on board was zero at the very beginning of each 
experiment, which could lead to more hyperglycaemia on the 
first day. The second day (D2) to the eighth day (D8), in total 
seven days (one week), was defined as W1 and the treatment 
used was suggested by BA. In the meantime, ABBA updated 
the features based on the daily glucose measurements. From 
the ninth day (D9) to the fifteenth day (D15), i.e. in week 2 
(W2), ABBA provided daily suggestions for the long-acting 
insulin amount, as well as the bolus amount for the main 
meals. 



  

TABLE I.  GLUCOSE LEVELS (MEAN±STANDARD DEVIATION) 

 
E1 E2 E3 

BA ABBA BA ABBA BA ABBA 

% in Target 73.5±8.6 83.9±9.3 76.8±6.0 91.7±5.2 76.9±6.0 91.7±5.3 

% in Hypo 0.8±1.0 0.7±1.1 8.9±4.3 1.8±0.9 9.1±4.3 1.8±0.8 

% in Severe Hypo 0.1±0.4 0.0±0.1 4.5±4.0 0.7±0.9 3.9±3.6 0.6±1.0 

% in Hyper 25.6±8.8 15.4±8.6 9.8±4.7 5.9±4.7 10.1±4.8 5.9±4.7 

% in Severe Hyper 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

 
The DMMS.R simulator provides for virtual T1D subjects 

with the patient-specific “optimal” basal insulin and CIR, 
which can bring the virtual subjects to a relatively well 
controlled condition. To reflect the bias that the healthcare 
specialist may have when estimating “optimal” values, an 
uncertainty of 10% of the given value was applied. Three 
experiments were designed to evaluate the performance of the 
algorithms from different aspects:  

• E1: the amount of “optimal” basal and bolus insulin was 
decreased by 10%; 

• E2: the amount of both “optimal” basal and bolus insulin 
was increased by 10%; 

• E3: the amount of both “optimal” basal and bolus insulin 
was considered to have a uniformly distributed 

uncertainty of ±10%. 

The experiments were conducted with the virtual adult 
T1D cohort. There were in total 11 virtual subjects, including 
10 individual subjects as well as one average subject. Subject 
number 7 was aged 47 with a body weight of only 46 kg and 
exhibited strikingly high fluctuations in blood glucose in 
comparison with the other subjects. A 10% increase on top of 
the “optimal” treatment caused an extreme reaction during BA 
the phase, so this subject was excluded from the scenarios. 

C.  Meals, Insulin Sensitivity, Glucose Measurements and 

Insulin Delivery 

Four meals per day, presented as breakfast, lunch, dinner 
and bed time snack, were considered in the in silico 
evaluation. The meal timings and the CHO amounts are: 07:00 
h (50 g), 12:00 h (80 g), 18:30 h (70 g) and 23:00 h (15 g). 
Furthermore, in order to reflect the error in the estimation of 
the patients’ CHO, a uniformly distributed uncertainty of 
±50% was considered for the CHO amount used in calculating 
the bolus dose. 

The intraday variability of insulin sensitivity was 
considered in the sense of the “dawn phenomenon”. This 
refers to periodic episodes of hyperglycaemia occurring in the 
early morning hours before and after breakfast [25]. As 
implemented in [20], in the present study, SI also dropped 
every day between 04:00 and 08:00 to 50% of its original 
value, and SI ramped up or down within around 30 minutes.  

Four glucose measurements per day, which were measured 
with virtual SMBG devices, were required. Three of them 
were pre-meal measurements and were measured 20 minutes 

before the main meals. The bedtime measurement took place 
at 23:00h.  

Long-acting insulin, which was used to keep blood glucose 
under control throughout its daily routine, was injected once 
per day at 23:00 h, i.e. directly after the last measurement of 
the day. The rapid-acting insulin, i.e. the bolus dose, was 
injected after the pre-meal measurements, 20 minutes before 
the main meals. This configuration reflected the general 
injection habits of users of insulins.  

D.  Evaluation metrics 

The evaluation of the performance of the experimental 
scenarios was based on the analyses of the blood glucose level 
of the virtual patients. Different metrics were implemented to 
assess the performance. The most widely used parameter is the 
percentage of time in different blood glucose ranges: 
percentage time in glucose target range [70-180] mg/dl; 
percentage time in hypoglycaemia [50-70) mg/dl; percentage 
time in severe hypoglycaemia <50 mg/dl; percentage time in 
hyperglycaemia (180-300] mg/dl; and percentage time in 
severe hyperglycaemia >300 mg/dl.  

Furthermore, two glycaemic indices, LBGI (Low Blood 
Glycaemic Index) and HBGI (High Blood Glycaemic Index) 
were considered. LBGI indicates the risk of hypoglycaemia, 
and HBGI indicates the risk of hyperglycaemia.  

IV. RESULTS AND DISCUSSION 

Table I presents the results of the three scenarios of the in 
silico experiments. During the BA phase, since in E1 less 
initial insulin was given, the subjects suffered much 
hyperglycaemia. In contrast, more initial insulin in E2 reduced 
the percentage in hyperglycaemia but also increased the time 
spent in hypoglycaemia. In comparison with BA, and in each 
scenario, ABBA reduced the percentage of time in the (severe) 
hypo- and hyperglycaemic ranges and increased 10% to 15% 
in the target range.  

Fig. 1 shows the daily LBGI and HBGI values of the 
experiments E1 to E3. In the case of E1, in the second week 
(W2), HBGI was reduced to under 5 (minimal risk), while 
LBGI remained within 1 (minimal risk.). In both E2 and E3, 
HBGI remained at minimal risk during the whole process, 
while LBGI was reduced by ABBA from medium risk (2.5 to 
5.0) to minimal risk (smaller than 1).  

 



  

 

Figure 1.  Daily LBGI and HBGI  

 
V. CONCLUSION 

This paper presents the application of ABBA, an adaptive 

basal-bolus algorithm, to T1D patients who use the SMBG 

device and insulin pen. Three different experimental 

scenarios were designed to evaluation the algorithm in 

comparison with the conventional bolus advisor. The 

preliminary results of in silico trials with the DMMS.R 

simulator indicate that the algorithm is promising in the 

proposed applications. More experiments are needed to 

validate the algorithm with more variabilities and 

uncertainties, and the algorithm needs to be further optimised 

for extreme diabetic individuals. Furthermore, this approach 

has the potential to be applied for T2D patients who use 

SMBG and MDI therapy.  
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