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Abstract— The extraction of expressive features from an
electroencephalography (EEG) signal is necessary for classi-
fication of movement and movement imagination of the limbs.
We introduce different preprocessing and feature extraction
algorithms for this purpose and develop an algorithm that
selects features by their feature importance. This selection is
used as an evaluation measure for features, their preprocessing
algorithms and the EEG electrodes. Our results show that most
influential features for signal interpretation are: common spatial
patterns, fractal dimensions, as well as, variance and standard
deviation of the preprocessed data. We show that preprocessing
with continuous wavelet transforms outperforms the other
tested preprocessing algorithms. Furthermore, we show that
high gamma frequencies (70-90 Hz) contain more information
than the lower µ-rhythms (8-12 Hz) where event-related-
desynchronization (ERD) is known to occur. The important
EEG electrodes for this classification task are located in the
left and right back of the motor-cortex. The proposed algorithm
can be further used to create subject-specific and performance
models for real-time classification.

I. INTRODUCTION

Real-time brain-computer interface (BCI) applications
need fast and stable methods for signal preprocessing and
feature extraction. Electroencephalography signals are highly
subject-specific and show a poor signal-to-noise ratio due
to their origin from beneath multiple biological layers. For
classification or regression tasks, it is crucial to calculate
expressive features of the signal in order to extract the
important information. For example ERD occurs during
movement or the imagination of movement of the upper
or lower limbs [1]–[3]. This seems to be a meaningful
feature of detecting movement imagination in across-trial
averaging [1], but therefore it has limited potential for real-
time applications. Many approaches show alternative feature
extraction methods [4], [5] which can be considered.

In this work several preprocessing and feature extraction
algorithms were selected that could be utilized for real-time
analysis. Therefore, a tool was developed to rate the features
for each individual subject. and select the best analysis
algorithms.

II. EXPERIMENTAL SETUP

Experiments were performed with 13 healthy adult sub-
jects, where written informed consent to participate in this
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study was obtained. Seven male (mean age: 30.9± 3.0) and
six female subjects (mean age: 27.2 ± 5.6) were analyzed.
Each subject participated in two sessions. The time between
the sessions was at least 3.5 hours (for one subject the
time between sessions was about 3 weeks). In each session,
two experiments were performed: the movement experiment
(ME) where the subjects were asked to move the limb shown
on a standard 60 Hz display (left arm, right arm, left leg,
right leg) and the imagine experiment (IE) where the subjects
should just imagine the movement. The duration of an exper-
iment was approx. 10 minutes. The experimental flowchart
is shown in Fig. 1. These experiments were conducted in
accordance to the principles of the Declaration of Helsinki
(2000) [6]. The study was purely observational.

After an initial five seconds, a reference image (see
Fig. 2a) was shown. Two to five seconds later a class image
(one of Figs. 2b to 2e) with an acoustic signal was presented
and an electrical signal (trigger) was sent to the measuring
devices. The subject was instructed to move (or imagine the
movement of) the shown limb. The image vanished after two
seconds. The screen was left blank for five to ten seconds
and the next trial began by showing the reference image.
This procedure was repeated 40 times so that every class
was presented ten times. The sequence of the class images
was randomized. The above-mentioned trigger was used to
synchronize the devices and to find the beginning of the trials
in the data.

Fig. 1: The flowchart for the ME and IE experiments
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(a) (b) (c) (d) (e)

Fig. 2: (a) reference image, (b)-(e) class images (left arm,
right arm, left leg, right leg)

Before the beginning of the measurements the participants
tried the movements and saw the reference and some class
images.

During the experiments, the EEG-signal was measured
with g.SCARABEO active Ag/AgCl-electrodes with the
g.HIamp amplifier from Guger Technologies (g.tec) with 256
Hz sampling rate. The signal was preprocessed with a 48-52
Hz Butterworth notch filter, as well as, a 0.5-100 Hz 8th order
Butterworth bandpass filter. We used electrodes positioned
as shown in Fig. 3 of the 10–10 system. For each electrode,
the impedance was measured before a session and the value
was always below 50 kΩ. Furthermore, during MEs, we
simultaneously recorded the movement of the limbs using
acceleration sensors to determine the correct start and end
times for the movement. After each session we cleaned and
disinfected the devices.

To evaluate the IE we supposed similar inherent timing
for each subject where we approximated the start of move-
ment imagination and the time for movement imagination
by taking the mean of the previous ME data for the real
movement for each class. In the end, a labeled data set for
the real movement and the imagination of the movement was
acquired. Fig. 4 shows a schematic of the experimental setup.

Fig. 3: Electrode positions of the 10–10 system

III. METHODS

Here we introduce a methodology to evaluate features for
real-time EEG analysis. Therefore a series of many different
features and their ranking is calculated. This provides the
opportunity to select the best ranked features and to use them
for online evaluation.

We use a sliding window technique with window size
w = 85 samples (≈ 332 ms)‡ and an overlap of 70 samples.
We calculate features for each window in two steps. First,
the signal is preprocessed with different algorithms to reduce
the noise of the signal and secondly, features are calculated
for each preprocessed data stream (see Fig. 5).

A. Preprocessing algorithms

Besides keeping the original raw signal unchanged as one
variant, we use several variants of two different types of
algorithms for preprocessing to get numerous filtered copies
of each signal.

a) Bandpower: is the power within a frequency band.
To calculate it, we apply a bandpass filter and square the
signal. We use three different distinct frequency band-ranges
where each range is split into smaller frequency bands as
shown in table I. The 8-12 Hz frequency range is known for
containing the ERDs [11]. The band-range about ≈ 40 Hz is
also stated in literature for containing movement information
[12], [13]. We also consider the high gamma frequency
ranges (70-90 Hz) as they seem to play an important role
for movement classification [13]–[15].

b) Continuous Wavelet Transform (CWT): It is well
known that wavelet transforms have good properties in the
domain where non-periodicity and non-stationarity have to be
assumed, which is true for EEG-signals [14]. In our research,

‡These values are motivated by the fact that approximately 300 ms after
a decision or stimulus, a unique pattern can be seen in the EEG (P300) [7],
[8], which can be used for controlling BCI applications [9], [10].

Fig. 4: Schematic figure for the experimental setup
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Fig. 5: The workflow for feature calculation. This is done
for each window of each electrode signal.

we use a mexican-hat wavelet implemented in PyWavelets
[16] which is defined in the time domain as:

Ψ(t) =
2√

3 4
√
π

(1− t2)e−
t2

2 (1)

Due to the shape of the mexican-hat wavelet, it is possible
to approximate a frequency with a given scale of the wavelet
(see Fig. 6). In our research we use the scales shown in
table II (which approximately resembles the frequencies of
the bandpower).

B. Feature extraction

Feature extraction algorithms can be separated into mainly
two classes: Single electrode features (that are calculated
for each electrode) and multielectrode features (that use
combinations of electrodes for a single feature).

1) Single electrode features: We calculated 11 different
features on each data stream. These are nine statistical
features, fractal dimension (FD) and running variation
coefficient (RVC).

Fig. 6: The mexican-hat wavelet with scale 1 and a sine wave
with frequency 64 Hz, both discrete sampled with 256 Hz.
It can be seen that the peak of the wavelet approximates the
sine wave at this position.

a) Statistical features: The nine statistical measures are:
• Minimum: min(x) • 25-percentile
• Maximum: max(x) • 50-percentile
• Range: max(x)−min(x) (median)
• Arithmetic mean: x̄ = 1

n

∑i
i−n xi • 75-percentile

• Variance: σ2 = 1
n

∑i
i−n (xi − x̄)2

• Standard deviation: σ
where xi is the individual data point and x is the windowed

data set.
b) Fractal dimension: is a measure of complexity of

the signal [17]. We use Katz’ method [17] with slight
adjustments as it is very fast to calculate compared with other
algorithms [18]. The formula used for the FD is therefore
given as

FD =
ln(L)

ln(d)
(2)

L =

w∑
i

√
(P i

x − P i+1
x )2 + (P i

y − P i+1
y )2 (3)

d = max
i=1...w

√
(P 1

x − P i
x)2 + (P 1

y − P i
y)2 (4)

where L is the length of the signal curve, d is the far-
thest distance between the start point (P 1) and any of
its predecessors and w is the window length. P i

x refers
to the x-component of the i-th point, while P i

y refers to
the y-component respectively (in the respective unit of the
preprocessing algorithm). The distance in x-direction was set
to 1 for each consecutive point, which simplifies the formula
for L and d to:

L =

w∑
i

√
1 + (P i

y − P i+1
y )2 (5)

d = max
i=1...w

√
(i− 1)2 + (P 1

y − P i
y)2 (6)

c) Running variation coefficient: We calculate the vari-
ation coefficient for the window, but calculate the mean (x̄)
not only for the current window but also for the n windows
before. This results in the following formula for the RVC:

RV C(x) =
σ

x̄(n)
, with x̄(n) =

1

n

0∑
i=−n

x̄i (7)

2) Multielectrode features: We consider only one multi-
electrode feature, namely the common spatial pattern (CSP),
which was first introduced for EEG data in [19] and first used
for BCI systems for binary classification problems in [20].
Further it was expanded for multiclass problems in [21]. We
use a Python implementation from the MNE library [22],
[23] to calculate the feature. The CSP is an algorithm that
approximately maximizes mutual information of independent
components of the signals and the class labels [21]. For our
research, we transform the data into CSP-space and extract
the average power of the eight best CSP features.

C. Roundup amount of features

Considering the preprocessing algorithms, the number of
electrodes and feature-classes, we can calculate the amount
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TABLE I: The used frequency bands for bandpower calculation. First column shows abbreviation and main band-range.
Values are in Hz

BP1 8–12.5 8–9 8.5–9.5 9–10 9.5–10.5 10–11 10.5–11.5 11–12 11.5–12.5
BP2 39–47 39–40 40–41 41–42 42–43 43–44 44–45 45–46 46–47
BP3 70–95 70–80 75–85 80–90 85–95

TABLE II: The used scales for the CWT. The approximated frequency in Hz is shown in braces.

CWT1 5–9 5.00 (13) 6.00 (11) 7.00 (9) 8.00 (8) 9.00 (7)
CWT2 1.35–2.15 1.35 (47) 1.55 (41) 1.75 (37) 1.95 (33) 2.15 (30)
CWT3 0.7–0.9 0.70 (91) 0.75 (85) 0.80 (80) 0.85 (75) 0.90 (71)

of features used. For the preprocessing we have 20 band-
powers, 15 CWTs and one raw stream, resulting in 36 data
streams for each of the 16 raw signals coming from the 16
electrodes. For each of the streams there are nine statistical
features, one FD and one RVC. CSP adds eight features per
data stream. This sums up to 11·36·16+8·36 = 6624 features
per window. In order to reduce the amount of data and to
discriminate features that contain information from features
that do not, we use methods from the domain of machine
learning. These are described in the following section.

D. Ranking and evaluation

To evaluate our proposed methods, we use the Random
Forests classification algorithm [24] implemented in scikit-
learn [25]. This algorithm provides an instrument to sort a
large number of features by their importance and hence to
single out the most important ones. The training of a forest
with our labeled data provides a feature importance vector,
which can be used as a ranking function for the features.
Another important property of Random Forests is that they
are feature-scale invariant (because of the underlying usage
of decision trees) so the features do not need to be scaled
into a specified range.

For evaluation, we train the Random Forest and sort
the features by their feature importance (resulting in the
sorted feature vector r with the sorted feature importance
vector f which sums to 1). Afterwards we define a cutoff
feature percentage (Cp) and define our feature measure mp

as follows:

mp(ri) =

{
fi :

∑i
j=1 fj ≤

Cp

100

0 : otherwise
(8)

For each feature we additionally store the data stream and
the electrode where it originates from. This allows us to
determine which features, which preprocessing algorithms
and which electrodes are important. For our research we set
Cp = 10% to limit the amount of selected features.

IV. RESULTS AND DISCUSSION

To evaluate the importance of the features, preprocessing
methods and electrodes, we calculate the feature measure in
two ways. Firstly, for all features and secondly, for the subset
of all features except CSP because CSP uses all electrodes
which makes the electrode distribution not as expressive.

Using all features: Figs. 7a and 7d shows the importance
of the features. It can be seen that the most important feature
is CSP followed by FD. In ME, variance, standard deviation
and range play a role, whereas in IE range is less important.
RVC is not considered once and has therefore no meaning
for the classification in this setting.

For the preprocessing, we can see in Figs. 7b and 7e that
the CWT preprocessing is more important than the other
algorithms. Furthermore, the CWT with higher frequencies
(39-90 Hz) contains more useful information. This is true
for both ME and IE, although the CWT around 8-13 Hz
adds approximately equally to the classification in IE. Such
findings maybe due to the fact that electromyographic (EMG)
signals corrode the pure brain signal during thinking and
movement [26], [27]. For our use-case, it does not matter
much if the measured data is from EMG (that is emitted
by thinking) or the real brain data as the subjects should
also be able to control these signals for their intentions.
Unexpectedly here, the bandpower preprocessing in the lower
frequency bands plays a minor role [1]. Also the raw data
stream does contain useful features.

Figs. 7c and 7f show the mean electrode distribution.
As can be seen, every electrode contributes approximately
equally to the classification, which is not surprising as CSP
uses all electrodes. Therefore we looked into the distribution
without the calculation of CSP.

Without CSP: In this setting the median amount of features
used to reach the 10% hurdle given by the cutoff parameter
Cp is about nine times higher than in the setting with using
all features (see Fig. 9) which in turn means that CSP
contributes significantly to the classification.

On the feature side, Figs. 8a and 8d show that FD
contributes the most followed by the minimum, variance and
standard deviation in ME. The contributions are similar in
IE but also include the maximum . What is evident is that
the mean and RVC do not add to the classification and thus
are useless for this task.

The distribution of the preprocessing algorithms stays the
same (see Figs. 8b and 8e), only CWT in the range about
70-90 Hz is much more important and the bandpower in the
lower (8-13 Hz) and the upper range (70-90 Hz) contributed.
Interestingly, bandpower in the range of 39-47 Hz adds
nothing to the classification. As can be seen in Figs. 8c
and 8f, the outer electrodes contain more useful features for
this classification task than the electrodes inside. This is not

770



(a) Used features in ME (b) Used preprocessing in ME
(c) Used electrodes in ME

(d) Used features in IE (e) Used preprocessing in IE
(f) Used electrodes in IE

Fig. 7: Evaluation of all features. The whiskers of the boxplots are the range of the feature importance of the given view.
(a), (d): View on the importance by features. (b), (e): View on the importance by preprocessing types. (c), (f): View on the
importance by the used electrodes. Diameter of the gray circles is the median importance of this electrode and the blue ring
is its median absolute deviation (mad) of the importance.

(a) Used features in ME (b) Used preprocessing in ME
(c) Used electrodes in ME

(d) Used features in IE (e) Used preprocessing in IE
(f) Used electrodes in IE

Fig. 8: Evaluation of features without CSP. The whiskers of the boxplots are the range of the feature importance of the
given view. (a), (d): View on the importance by features. (b), (e): View on the importance by preprocessing types. (c), (f):
View on the importance by the used electrodes. Diameter of the gray circles is the median importance of this electrode and
the blue ring is its median absolute deviation (mad) of the importance.
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Fig. 9: The amount of features used to reach the 10% hurdle.
Left shows with all features and right without CSP features.

surprising as it is known that the left and right hemisphere
correspond to the right and left side, respectively, of the
body which fits to our analysis. The surprising finding is
that even the electrode in the front (Fz) is important in some
cases. Also the back of the head (CP3 to CP4) contributes
meaningfully to our task.

Real movement and imagination: The difference between
ME and IE is not as significant as expected. The amount
of features increases just slightly from ME to IE as can
be seen in Fig. 9. Even the distribution of the features and
the electrodes differ only slightly. The distribution of the
preprocessing algorithms also did not change much except
for the usage of CWT1 as its weight is higher in IE than in
ME in most cases. This may be due to less EMG artifacts in
the data and therefore a higher relevance of the ERD which
should be present in the frequency range of CWT1.

V. CONCLUSION

We discussed two well-known preprocessing methods as
well as some feature extraction methods. An algorithm
was implemented that allows the determination of subject-
specific preprocessing methods, features and best performing
electrode positions. This algorithm can be utilized to create
powerful and performance feature models for each individual
subject which reduces preparation and computation time
for the subjects during consecutive sessions. We use the
feature importance measure of Random Forest classifiers for
dimensional reduction as these are feature scale invariant as
opposed to other algorithms used in literature (e. g. [4], [28]).

Our findings indicate that preprocessing the signals with
CWT is superior to preprocessing them with bandpower.
Another important finding is that most information for our
classification task seems to be inside the high gamma band
(70-90 Hz), followed by the 39-45 Hz range. Further, we
can say that CSP has the most impact on classification. FD
also seems to be a very meaningful feature. Other useful
features are variance, standard deviation and minimum, but it
is necessary to use features that work best for the individual
subject so other features may still be considered, with the
exception on RVC and mean as they add nothing to the
classification. Important electrodes for this classification task
are Fz, FC3, FC4, C3, C4, CP3 and CP4 which corresponds
to the left and right hemisphere. For further research we may

additionally consider CP1, CPz and CP2 as they seem to play
some role.

In our next research steps, we will use these results
and perform real-time classification of the described five-
class experiment. Therefore, we not only want to rely on
the algorithms provided, but also on brain plasticity using
neurofeedback to achieve good results.
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