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Abstract— Human Activity Recognition (HAR) is a growing
field of research in biomedical engineering and it has many
potential applications in the treatment and prevention of
several diseases. Due to the recent advancement in technology,
devices that collect position and orientation measurements (e.g.
accelerometers and gyroscopes) are becoming ubiquitous. These
measurements can then be used to train machine learning
models for HAR. In this research, we propose one recurrent
neural network architecture and a data augmentation approach
for building robust and accurate models for HAR. We compared
models with Long Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU) layers. The proposed data augmentation
approach was used to make the models robust to the cases
where one or more sensors are missing. In this empirical study,
we could also understand some relations between the ideal
locations of the sensors in the participants and the types of
activities performed. The proposed approaches were tested in
the GOTOv dataset from a study which involved 35 participants
performing 16 sedentary, ambulatory and lifestyle activities in
a semi-structured environment. The results presented, clearly
show that the models are able to detect these activities in a
robust way.

I. INTRODUCTION

Human Activity Recognition (HAR) is an active field of
research in biomedical engineering. HAR can be defined
as the capacity to interpret the human motions through
sensors and determine its activity [1]. There has been much
research in the field of HAR [2], [3], [4], mostly due to the
recent advancement in sensing technologies. Sensors such
as accelerometers can detect and respond to inputs from the
physical environment [5]. Nowadays, more and more sensors
are embedded in devices such as camera-based [6], [7], depth
sensor-based [8], [9] and wearable-based sensors [10], [11] to
collect measurements for HAR. One of the most prominent
applications of HAR is in the health sector for treatment and
prevention of several diseases [12]. For example, monitoring
and treatment of chronic diseases in elderly people [13],
[14], to encourage physical exercises for children with motor
disabilities [15] or estimating energy expenditure to help in
the treatment and prevention of obesity [16].
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In this work we empirically test two approaches for HAR
using sensor data provided by the Leiden University Med-
ical Center (LUMC). The GOTOv (Growing Old TOgether
validation) study [17] data was colected from 35 participants
performing 16 sedentary, ambulatory and lifestyle activities
in a semi-structured environment. Accelerometers sensors
were placed on multiple body locations, such as the wrist,
ankle and chest for capturing the body motion. This infor-
mation can then be used for predicting the activity that was
performed. However, there are some challenges which arise
when analyzing sensor information. For example, different
activities with similar measurements (e.g. walkingNormal
and walkingSlow. Besides, each own person has different
pace for doing the same thing.

One common way to approach that is using machine learn-
ing for the detection of human activities [2], [3], [4]. Machine
learning methods are able to extract relevant features and
also learn complex relations in large datasets. Many different
methods can be used for HAR, for example, Random Forest
classifiers [4], Hidden Markov Models [2] and Conditional
Random Field (CRF) [3]. In this work we propose and test
two different neural network approaches, one with Gated
Recurrent Units (GRU) and another with Long Short Term
Memory (LSTM) layers.

Even though most of the participants in the GOTOv study
were wearing sensors in the ankle, wrist and chest, some
of them could not wear all the devices. This resulted in
a dataset with missing information. For this reason, our
neural network models for HAR needed also to be robust
to different levels of missing information (e.g. no sensor
in the wrist or only one sensor in the ankle). To train the
models to deal with missing information, we proposed a
data augmentation technique based on [18]. Empirical results
showed that, the proposed data augmentation, improved the
ability of the models to detect human activities in cases
where measurements from one sensor, or a combination of
sensors, were not provided.

This paper is structured as follows: in Section II, we
discuss the materials and methods used to carry out the
research; in Section III we present the experimental setup;
in Section IV we discuss the results. Finally, in Section V
we present the discussion and conclusion of our research.
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II. MATERIALS AND METHODS

A. Recurrent Neural Networks

Recurrent neural networks (RNN) contain feedback loops
within their hidden layers whose activation at each time
depends on that of the previous layer [19]. Because of this,
they are more suitable for dealing with sequential data. RNN
have been used to solve a variety of problems, such as
language modeling [20] or speech recognition [21].

Even though RNN are able to remember older information
from sequences, they are not able to do this efficiently when
the time difference in the sequences becomes too big (due to
the vanishing gradient problem [22]). To avoid that, LSTM
or GRU layers can be used.

LSTM and GRU are a type of RNN layer that contain
memory cells [23]. Both LSTM and GRU contain memory
cells that are used to store information. Gates control which
information goes through the model. For that, they use a
sigmoid function and pointwise multiplication operations.
LSTM contain 3 gates, namely, forget, input and output.
GRU have only 2 gates, the reset gate and the update
gate. The reset gates controls which of the memory cell
information needs to be forgotten. The update gates controls
which information needs to be updated. This allows them
to remember long sequences of information without loosing
relevant information.

B. Data Augmentation

Data augmentation refers to a type of methods for the
introduction of unobserved data or latent variables [24].
Different data augmentation approaches have been used in
image classification [25], document analysis [26] or automo-
tive industry [18]. These enhance the overall performance of
machine learning models by preventing them from overfitting
the data during the inductive learning phase [24].

C. Data

The dataset used for this experiment was provided by
the Molecular Epidemiology department from LUMC and
is referred as GOTOv study [17]. The GOTOv study was
designed to serve multiple ageing studies in LUMC that
collected data1 from similar population and devices [27],
[28], [29]. The study involved 35 participants (14 females
and 21 males) with an average age of 65. Each participant
performed 16 everyday activities while wearing 5 sensor
devices on 6 different body locations. The devices were
GeneActiv accelerometers and Equivital. We use the sensor
measurements recorded by the GeneActiv sensors placed
on the wrist, ankle and chest for this experiment. Each
GeneActiv sensor records triaxial acceleration (+/- 8g) with
a high sampling rate of 83Hz.

Every participant involved in the study had to follow a
specific protocol for the activities performed. Before starting
the activities, a calibrations step took place which lasted

1The data collection involving human subjects was approved by the
Medical Ethical Committee of LUMC and was performed according to the
Helsinki Declaration.

approximately 15 minutes. The activities were divided into 2
parts, indoor and outdoor. The indoor activities consisted of
lying down, sitting, standing and several household chores,
such as dishwashing, stakingShelves and vacuumCleaning.
The outdoor activities included the different types of walking
walkingSlow, walkingNormal, walkingFast and cycling. All
participants were allowed a resting period of 1 minute
standing between the different activities providing this way
a clear demarcation to the signal data.

Even though each participant was supposed to complete a
total of 16 activities, this was not always possible. This was
because 7 of the participants could not perform the outdoor
activities due to weather conditions.

III. EXPERIMENTAL SETUP

A. Data pre-processing

In order to predict the human activities from the original
data, several transformations had to be made. We started by
standardizing the measurements to zero mean and a standard
deviation of 1. Then, due to the choice of the methods,
RNN, we had to build sequences of consecutive measure-
ments associated with each activity and each participant. A
sequence is generally defined as a finite or infinite list of
terms arranged in a definite order [30].

We used a fixed time window of 2.5 seconds [31] which
resulted in sequences of length 200, because of the frequency
at which the sensor measurements were sampled (83Hz).
Because activities were performed sequentially, measure-
ments from two different activities could appear in the same
sequence. To avoid that, sequences which only had part of
the measurements from the respective activity were dropped.

Besides the previously mentioned transformations, we did
not use any feature extraction or feature selection techniques.
This was because deep neural networks are able to automat-
ically learn feature representations during the training phase.

Finally, another important step was to deal with the class
imbalance. In particular, cycling is the most represented class
with 66858 instances and walkingStairsUp the minority class
with only 1286 instances. For this reason, we under-sampled
the data so that the models are trained with an equal number
of instances per class.

B. Proposed approaches

We proposed one RNN architecture to tackle the prob-
lem of HAR. This architecture was implemented with two
variants, one using LSTM layers and other one with GRU
layers. As for selecting the number of hidden layers and
neurons, since there is no rule of thumb to decide that [32],
several other architectures were also previously tested. This
final setting was obtained after a careful testing period which
took approximately 2 weeks of experimental work.

The most promising architecture was in fact quite simple.
It consisted of an input layer with 9 neurons, 3 hidden layers
with 512 neurons and an output layer. The output layer
contains 16 neurons, which corresponds to the number of
targets (Section II-C). A dropout ratio of 50% between every
two layers of the network was used to prevent overfitting.
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During the training we used a data Generator to apply
the data augmentation, which simulated the case where
sensor measurements could be missing. To simulate the
case of missing sensor measurements, at every batch, the
measurements of a randomly selected sensor, or sensors, have
their original values replaced with zeros. Once these values
are set to zeros, the model is forced to train with the other
input features [18]. This helps the model to be more robust
to the cases where any sensor is missing.

Besides the data augmentation, the generator was also used
to solve the problem of class imbalance that was present
in our training data. For that, on every batch, the number
of classes was automatically balanced. Moreover, different
combinations of sequences were randomly selected at each
batch. Thus, making it difficult for the model to memorize
the training data.

C. Evaluation

We tested the performance of the different models using
the Leave One Subject Out (LOSO) cross-validation. We
trained the models with data from 25 participants and val-
idated on data from 2 other participants. The data of the
remaining participant, the test set, was then used to test
the model after training was completed. To get the overall
performance of the proposed approaches we averaged the
accuracies of the different models.

Adding to that, to check for the robustness of the models
to missing data, we tested how they performed on 7 different
cases (or scenarios):

- awc sensor measurements from ankle, wrist and chest.
- aw sensor measurements from ankle and wrist.
- ac sensor measurements from ankle and chest.
- wc sensor measurements from wrist and chest.
- a sensor measurements from the ankle.
- w sensor measurements from the wrist.
- c sensor measurements from the chest.
We performed a t-test score for the 7 different cases. For

that we used the ttest ind python package.

IV. RESULTS

In this section we present and discuss the results obtained
from the two different approaches, the RNN with LSTM
layers and the RNN with GRU layers. For simplicity, we
refer the models as LSTM and GRU models. All models
were trained in 200 epochs with a mini-batch size of 512.

The barplot in Figure 1 represents the average accuracy of
LSTM and GRU models obtained in the different scenarios.
Besides the better accuracy, the GRU models were faster
to train when compared with the LSTM models. It took 22
seconds to complete an epoch of training using GRU models,
while it took 222 seconds in the case of LSTM models.

For both models, there is an expected decline in the
accuracy as sensor measurements are removed (see Figure
1). The relative difference (in p.p.) between GRU and LSTM
models for the different scenarios (awc, aw, ac, wc, a,
w, c) was 6, 7, 10, 7, 11, 12 and 15, respectively. This
seems to indicate that, even though both models decrease in
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Fig. 1. Barplot showing the average accuracy of the LSTM and GRU
models for the different scenarios. The x-axis represents the different test
scenarios (awc, ac, aw, wc, a, c, w) and the y-axis the average accuracy.

accuracy when there is less information, LSTM models have
a bigger decrease in accuracy than GRU. The t-test indicated
a significant difference between the LSTM and GRU models
in all the different scenarios.

The box and whisker plot in Figure 2 gives an overview
of the accuracies obtained from the 28 the GRU models in
the 7 scenarios. In the case of having measurements from
all the 3 sensors, awc, the accuracy of the models ranged
between 72% and 98%. These results are quite impressive,
considering that HAR is a very challenging task, especially
in the case where the number of activities is high.

In the scenarios where these models only had sensor
measurements from two sensors, aw, ac and wc, the accuracy
was only slightly affected. In particular for ac and wc,
the range of accuracy was 58% − 92% and 57% − 96%

Fig. 2. Spread of accuracies for different scenarios where a sensor could
be missing for the GRU models.
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respectively. The exception, is the case where the models
have no measurements from the chest sensor, aw, in which
case the accuracy is almost not affected (69%− 97%). The
latter can be explained by the fact that the studied activities,
have more variation in the legs and arms than in the chest.

Finally, when sensor measurements from only one sensor
are given to the models, w, a and c, we can observe a
bigger drop in the accuracy. In particular, the loss of accuracy
when using only the chest sensor measurements was the most
striking which ranged between 52%− 76% if we ignore the
outliers (Figure 2). This can be explained due to little signal
changes recorded, as already mentioned. Nevertheless, it is
important to note that with 16 classes, an accuracy within
those ranges is quite satisfactory with only the chest sensor.

A. Using measurements from all sensors

Figure 3 shows the confusion matrix of the predictions
of GRU models, in the scenario of having measurements
from all the 3 sensors, awc. We observe that the models
are good at distinguishing between most of the activities in
this study. The highest misclassification is between the types
of walking (walkingSlow, walkingFast, walkingNormal). This
misclassification error might result from the different walking
pace, which are known to differ for each individual. For
example, a persons’ fast pace might be slow for another.

Also, the models could not distinguish some sittingChair
from sittingSofa activities. However, these two activities
are also quite similar. SittingChair is the activity where
participants are watching TV with the legs up on the couch,
while sittingSofa is when the participants are reading a paper
with their feet on the ground.

B. Using measurements from one sensor

In this section, for simpler comparison, the matrices are
relative to the confusion matrix presented in Figure 3.

Fig. 3. Confusion matrix of the predictions from all models with ankle,
wrist and chest sensor measurements.

Fig. 4. Confusion matrix of the predictions from all models with wrist
sensor measurements.

Therefore, the matrix in Figure 4, represents the difference
(in p.p.) between two confusion matrices. This is obtained
by subtracting the confusion matrix of the prediction in the
w scenario from the awc. This means that, positive values
indicate that the percentage is higher in the awc scenario.

In the scenario of having only the wrist measurements,
w, the models performed worst than the awc in the detec-
tion of most of the activities. Specially, there was higher
misclassification in the sitting and walking activities. In
particular, the misclassification errors increased by 26 p.p.
in the sittingCouch and sittingSofa activities. On the other
hand, a few exceptions can be observed in activities without
much movement of the legs (standing and stackingShelves).

We also analyse the predictions of the GRU models
obtained from sensor measurements of the ankle only, i.e.
scenario a. Figure 5 represents the matrix obtained by
deducting the confusion matrix of the prediction in the a
scenario from the awc. It can be observed a bigger decrease
in accuracy of the models in the prediction of household
activities, compared to the awc scenario. Also, without the
wrist and chest measurements, the number of cases where
the sittingSofa was misclassified as sittingChair increased
22 p.p.. Also, the other way around increased 18p.p.. This
can be explained by the fact that, the participants in the sofa
and chair have their hands in distinct positions.

Finally, we also look into the predictions of the GRU mod-
els obtained from sensor measurements of the chest, scenario
c. Figure 6 represents the matrix obtained by deducting the
confusion matrix of the prediction in the c scenario from
the awc. From Figure 6, we observed that four activities can
be predicted, from the measurements of the chest sensor,
almost as good as with all the sensors (less or equal to 5 p.p.
difference). The activities are lyingDowLeft, lyingDowRight,
walkingFast and syncjumping.
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Fig. 5. Confusion matrix of the predictions from all models with ankle
sensor measurements.

Fig. 6. Confusion matrix of the predictions from all models with chest
sensor measurements.

V. CONCLUSION

In this work we proposed two variants of a simple neural
network architecture for HAR. One variant of neural net-
works used Gated Recurrent Units (GRU) and the other Long
Short Term Memory (LSTM) layers. We also proposed a data
augmentation approach for making the models more robust
to scenarios where the measurements from one or more
sensors are missing. To test the models we used sensor data
provided by the Leiden University Medical Center (LUMC),
which involved 35 participants and 16 different activities (or
classes).

We tested the two neural network approaches, one using
LSTM layers and the other with GRU layers, and compared
them. The empirical results clearly showed that models

with GRU layers performed better when used in HAR.
Considering the misclassification errors observed, when the
model was given all the sensor measurements, we conclude
that most of the mistakes are in distinguishing between
the different types of walking (walkingSlow, walkingFast,
walkingNormal). These can be due to the difference paces
at which different participants go about walking. Also, some
mistakes were observed between the sittingChair and the
sittingSofa activities. Considering the similarity within these
two types of activities, it makes sense that the models made
some mistakes here.

We also tested the models in scenarios where we had
missing data. From the results, we observed that the GRU
models were more robust in the presence of missing data
than LSTM models. Besides, we could also conclude that,
using one sensor in the ankle and one in the wrist are enough
for the detection of GOTOv study activities (see Figure 1).

Based on the results of missing sensors, we could observe
which locations of the sensors were more relevant for the
detection of some specific activities. As expected, for the
detection of the activities which involved more movement in
the legs, the models relied more on the measurements from
the sensor in the ankle (see Figure 5). On the other hand,
for the detection of the activities with more movement in
the arms, the models relied more on the measurements from
the sensor in the wrist (see Figure 4). Finally, because most
of the activities involved the use of the upper part (arms) or
lower part of the body (legs), the sensor in the chest was the
least important.

As future work, we would like to improve the approach,
possibly with the use of other data augmentation techniques.
We would also like to test the proposed approach in more
datasets.
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