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Abstract— We present a new method to quantify in the 

frequency domain the strength of directed interactions between 

linear stochastic processes. This issue is traditionally addressed 

by the directed coherence (DC), a popular causality measure 

derived from the spectral representation of vector 

autoregressive (AR) processes. Here, to overcome intrinsic 

limitations of the DC when it needs to be objectively quantified 

within specific frequency bands, we propose an approach based 

on spectral decomposition, which allows to isolate oscillatory 

components related to the pole representation of the vector AR 

process in the Z-domain. Relating the causal and non-causal 

power content of these components we obtain a new spectral 

causality measure, denoted as pole-specific spectral causality 

(PSSC). In this study, PSSC is compared with DC in the context 

of cardiovascular variability analysis, where evaluation of the 

spectral causality from arterial pressure to heart period 

variability is of interest to assess baroreflex modulation in the 

low frequency band (0.04-0-15 Hz). Using both a theoretical 

example in which baroreflex interactions are simulated, and 

real cardiovascular variability series measured from a group of 

healthy subjects during a postural challenge, we show that –

compared with DC– PSSC leads to a frequency-specific 

evaluation of spectral causality which is more objective and 

more focused on the frequency band of interest. 

I. INTRODUCTION 

The heart period (RR interval of the ECG) and the 
systolic arterial pressure (SAP) are known to dynamically 
interact in a closed loop, as a consequence of the baroreflex 
mechanism acting as a feedback of SAP on RR, and of 
feedforward mechanisms, mainly of mechanical nature, 
whereby SAP values are influenced by previous RR changes 
[1]. These cardiovascular interactions are often assessed in 
the frequency domain, in order to focus on specific 
oscillations such as those in the low frequency (LF, 0.04-0.15 
Hz) and high frequency (HF, 0.15-0.4) bands, using coupling 
measures like the coherence, or causality measures like the 
directed coherence (DC) [2]. In particular the DC is widely 
used, in cardiovascular variability analysis and in many other 
fields, as a linear frequency domain measure of causal 
interactions between coupled multivariate dynamic processes. 
The DC is computed from the spectral representation of a 
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vector autoregressive (AR) process, whose parameters 
provide the basis to separate the power spectral density 
(PSD) of a target process into partial spectra related to its 
own dynamics and to the dynamics of the other processes 
interpreted as sources [2], [3]. 

In the practical application of DC where the function 
needs to be quantified in specific frequency regions, 
empirical approaches are adopted which consist in taking its 
maximum value, or taking its average value, within the band 
of interest [2], [4], [5]. However, these subjective choices 
may be ambiguous (a DC maximum can be absent within the 
observed band) or lead to imprecise quantifications (the 
average DC may be affected by spectral effects of nearby 
broadband oscillations). To overcome these limitations, the 
present study introduces a novel method to assess causality in 
the frequency domain based on spectral decomposition [6], 
[7]. Our idea is to apply such decomposition to the partial 
spectra of the PSD of the target process, representing each 
partial spectrum as the sum of bell-shaped functions with 
features (power, frequency, spectral bandwidth) related to the 
type and location (modulus and phase) of the poles of the 
transfer function which defines the vector AR process in the 
Z-domain. This decomposition leads to calculate, for each 
AR oscillatory component, a so-called pole-specific spectral 
causality measure (PSSC). 

In this study the new PSSC index is compared with the 
band-averaged DC, first in a theoretical model simulating 
cardiovascular interactions along the baroreflex, and then for 
the analysis of LF spectral causality from SAP to RR in a 
group of healthy subjects during a head-up tilt test protocol 
designed to elicit postural stress. 

II. METHODS 

A. Directed Coherence in Bivariate AR Processes 

Let us consider two jointly stationary, zero mean discrete 
stochastic processes collected in the vector Y(n)=[y1(n) 
y2(n)]

T
. The causal interactions between the processes may be 

expressed in a parametric form through the bivariate AR 
model of order p [2], [3], [8] 

 𝑌 𝑛 =  𝐀 𝑘 𝑌 𝑛 − 𝑘 + 𝑊(𝑛)
𝑝
𝑘=0  , (1) 

where W(n)=[w1(n) w2(n)]
T
 is a vector of zero-mean 

uncorrelated white noises with diagonal covariance matrix 

𝚺 = 𝑑𝑖𝑎𝑔{𝜎1
2, 𝜎2

2}, and where A(k) is 22 coefficient matrix 
with the coefficient aij(k) describing the interaction from 
yj(n-k) to yi(n) (i,j=1,2); here, instantaneous zero lag-effects 
are allowed in the direction from y1 to y2 setting a21(0)≠0 and 
aij(0)=0 otherwise. The system properties are evaluated in 
the frequency domain taking the Z-transform of (1) to yield 

𝑌 𝑧 = 𝐇(𝑧) 𝑊(𝑧), where the 22 transfer matrix is 
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 𝐇 𝑧 =  
𝐻11 (𝑧) 𝐻12 (𝑧)
𝐻21 (𝑧) 𝐻22 (𝑧)

 =  𝐈 − 𝐀(𝑧) −1 = 𝐀 (𝑧)−𝟏,  (2) 

with 𝐀 𝑧 =  𝐀 𝑘 𝑧−𝑘𝑝
𝑘=1  representing the coefficient 

matrix in the Z domain (I is the 2×2 identity matrix). Making 
explicit the inverse of the coefficient matrix, each element of 
the transfer function matrix is represented as (i,j=1,2; i≠j) 

 𝐻𝑖𝑖 𝑧 =
A 𝑗𝑗  𝑧 

  𝐀  𝑧  
;  𝐻𝑖𝑗  𝑧 =

−𝐴 𝑖𝑗  𝑧 

  𝐀  𝑧  
 . (3) 

Then, computing the transfer function on the unit circle in the 

complex plane (𝐇 𝑓 = 𝐇 𝑧 |𝑧=𝑒 𝑗2𝜋𝑓𝑇 ), the 22 spectral 

density matrix of the bivariate process becomes 
𝐒 𝑓 = 𝐇 𝑓 𝚺𝐇∗ 𝑓 , where 

*
 stands for the Hermitian 

transpose. This matrix contains the auto-spectra Sii( f ) as 
diagonal terms, and the cross-spectra Sij( f ) as off-diagonal 
terms. Exploiting (2,3), each auto-spectrum can be expanded 
as the sum of causal contributions to yield 

 𝑆𝑖 𝑓 ≜ 𝑆𝑖𝑖 𝑓 = 𝜎𝑖
2 𝐻𝑖𝑖 𝑓  2 + 𝜎𝑗

2 𝐻𝑖𝑗  𝑓  
2
, (4) 

where 𝜎𝑗
2 𝐻𝑖𝑗  𝑓  

2
≜ 𝑆𝑖|𝑗  𝑓  is the partial spectrum of yi 

given yj (i,j=1,2). From (4), a left-side normalization yields 

𝛾𝑖𝑖
2 𝑓 + 𝛾𝑖𝑗

2  𝑓 = 1, where 

𝛾𝑖𝑗
2  𝑓 ≜  

𝜎𝑗
2 𝐻𝑖𝑗  𝑓  

2

𝑆𝑖𝑖  𝑓 
=

𝑆𝑖|𝑗  𝑓 

𝑆𝑖 𝑓 
      (5) 

is the squared directed (causal) coherence (DC) from yj to yi, 
a well known function quantifying the dependence of yi on yj 
in the frequency domain. The DC functions defined as in (5) 
provide a frequency domain picture of the connectivity 

pattern of the bivariate process, with 𝛾𝑖𝑗
2  𝑓  quantifying the 

normalized coupling strength from yj to yi, being 0 when yj 
does not cause yi at frequency f, and 1 when the whole power 
of yi at frequency f is due to the variability of yj. 

The most common ways to assess the directed coherence 
inside a specific frequency band is to take the peak value of 
the DC assessed within the band, or to average its values over 
the frequencies of the band. 

B. Causal Spectral Decomposition 

In this study, we propose to decompose each transfer 
functions defined as in (3) using univariate spectral 
decomposition [6], [7] as the sum of q spectral components 
(q≅ p/2), which correspond the poles of the determinant 
of 𝐀  z . The spectral components are described by specific 
profiles, and have an associated frequency (related to the pole 
phase) and power (related to the pole residual). The 
decomposition of the i-j

th
 transfer function and the 

corresponding complex partial PSD function are obtained as 

 𝐻𝑖𝑗  𝑧 =
𝐴 𝑖𝑗  𝑧 

  𝐀  𝑧  
=

𝐴 𝑖𝑗  𝑧 

  𝑧−𝑧𝑘  𝑘
, (6) 

 𝑆𝑖|𝑗  𝑧 = 𝐻𝑖𝑗  𝑧 𝜎𝑗
2𝐻𝑖𝑗

∗  1/𝑧∗ , (7) 

where the poles zk, k=1,...q, are the roots of   𝐀  𝑧  . Then, 
each function (7) is expanded using Heaviside decomposition 
with simple fractions relevant to all its poles (i.e., the poles zk 

inside the unit circle and their reciprocals 𝑧 𝑘 = 𝑧𝑘
−1 outside 

the unit circle, with k=1,...,q), which are fractions weighted 
by the relevant residuals of Si|j(z) (i.e., 𝑟𝑘𝑧𝑘  and −𝑟𝑘𝑧 𝑘): 

 𝑆𝑖|𝑗  𝑧 =  𝑆𝑖|𝑗
 𝑘  𝑧 

𝑞
𝑘=1 , 𝑆𝑖|𝑗

(𝑘) 𝑧 =
𝑟𝑘𝑧𝑘

𝑧−𝑧𝑘
−

𝑟𝑘𝑧 𝑘

𝑧−𝑧 𝑘
 . (8) 

After finding the residuals and expanding the partial 

spectrum in simple fractions, the spectrum of yi is obtained 

remembering that 𝑆𝑖 𝑧 = 𝑆𝑖|𝑖 𝑧 + 𝑆𝑖|𝑗  𝑧  and computing 

(8) for values of z on the unit circle of the complex plane: 

 𝑆𝑖 𝑓 =  𝑆𝑖
(𝑘) 𝑓 𝑞

𝑘=1 =  𝑆𝑖|𝑖
(𝑘) 𝑓 + 𝑆𝑖|𝑗

(𝑘) 𝑓 𝑞
𝑘=1 . (9) 

The k-th component 𝑆𝑖|𝑖
(𝑘) 𝑓  has an associated frequency 

related to the pole phase, 𝑓 𝑘 = arg⁡{𝑧𝑘}, and power 

related to the pole residuals, 𝑃𝑖|𝑖 𝑘 = 𝑟𝑘  for real poles and 

𝑃𝑖|𝑖 𝑘 = 𝑟𝑘 + 𝑟𝑘
∗ for complex conjugate poles. 

Then, normalizing the spectral components to the total 
spectrum we can achieve the following decomposition of the 
causal coherence: 

 𝛾𝑖𝑗
2  𝑓 =   𝛾𝑖𝑗

2 𝑘 
(𝑓)

𝑞
𝑘=1 , 𝛾𝑖𝑗

2 𝑘 
(𝑓) ≜  

𝑆𝑖|𝑗
(𝑘)

 𝑓 

𝑆𝑖 𝑓 
. (10) 

Moreover, we define spectral causality measures by 

integration over the whole frequency axis, decomposing the 

variance of the process yi, 𝑖
2
, as follows: 

 𝑖
2 =  

2

𝑓𝑐
 𝑆𝑖 𝑓 𝑑𝑓

𝑓𝑐
2

0
=   𝑆𝑖

 𝑘  𝑓 𝑑𝑓
𝑓𝑐
2

0

𝑞
𝑘=1  (11a) 

 =    𝑆𝑖|𝑖
 𝑘  𝑓 𝑑𝑓

𝑓𝑐
2

0
+   𝑆𝑖|𝑗

 𝑘  𝑓 𝑑𝑓
𝑓𝑐
2

0

𝑞
𝑘=1

𝑞
𝑘=1  (11b) 

 =   𝑃𝑖|𝑖 𝑘 + 𝑃𝑖|𝑗  𝑘 =   𝑃𝑖 𝑘 𝑞
𝑘=1

𝑞
𝑘=1 . (11c) 

In (11c), 𝑃𝑖|𝑖(𝑘)is the part of the variance of yi due to its own 

dynamics and relevant to k-th oscillation (pole), 𝑃𝑖|𝑗 (𝑘) is 

the part of the variance of yi due to yj and relevant to the k-th 

pole, and summing this two parts of the variance we get the 

part of the variance of yi relevant to the k-th pole, i.e., 

𝑃𝑖 𝑘 = 𝑃𝑖|𝑖 𝑘 + 𝑃𝑖|𝑗 (𝑘). Using these partial variances, we 

define the so-called pole-specific spectral causality (PSSC) 

from yj to yi, relevant to the k-th oscillation, as: 

𝛾𝑖|𝑗
2  𝑘 ≜

𝑃𝑖|𝑗  𝑘 

𝑃𝑖 𝑘 
 .        (12) 

With this definition, we have that the sum of the two PSSCs 

𝛾𝑖|𝑖
2  𝑘  and 𝛾𝑖|𝑗

2  𝑘  is unitary, so that the PSSC ranges 

between 0 and 1, being equal to 0 when the power of the k
th
 

oscillation of yi (i.e. the oscillation at frequency fk) is totally 
due to its internal dynamics, and equal to 1 when it is totally 
due to the dynamics of yj assessed at the same frequency fk. 

Since the frequency fk is associated to a specific causal 
spectral profile, the corresponding PSSC value is an objective 
measure of the causal power at that frequency, and the total 
causal power in a frequency band can be easily obtained 
summing al PSSC values with frequency inside the band. 

III. THEORETICAL EXAMPLE 

To illustrate the new proposed PSSC measure in 
comparison with the traditional DC, we realized a theoretical 
simulation of a bivariate AR process of order p=5, where the 
process parameters are chosen to reproduce oscillations and 
interactions typical of cardiovascular variability series [9]. To 
this end, first we designed the diagonal AR coefficients for y1 
and y2 in order to simulate the LF (f1~0.1 Hz), very low 



  

 

Figure 1. Frequency domain causality analysis performed for the simulated 
cardiovascular process of Sect III. (a) Theoretical spectral density of the 
simulated RR process y2, S2( f ), and partial spectra related to own and 
causal dynamics S2|2( f ) and S2|1( f ) obtained as in Eq. (4); (b) DC profiles 
obtained as in sect. II.A, relating the partial spectra to the total spectrum; 
(c,d) partial spectral decomposition of S2|2( f ) and S2|1( f ) yielding the 

components 𝑆2|2
(𝑘) 𝑓  and  𝑆2|1

(𝑘) 𝑓  obtained as in Sect. II.B. Gray areas 

evidence the LF band (0.04-0.15 Hz) in (b), and the components of the 
partial spectra associated to f1=0.1 Hz in (c,d). 

frequency (VLF, f2~0 Hz) and HF (f3~0.25 Hz) oscillations 
typical of RR and SAP variability. This was achieved placing 

poles with modulus k and phase 2fk in the complex plane; 

for y1 we set 1=0.3, 2=0.8, 3=0 to have autonomous LF 
and VLF rhythms in the simulated SAP process, and for y2 

we set 1=0.8, 2=0, 3=0.9 to have autonomous LF and HF 
rhythms in the simulated RR process. The poles are the roots 
of 𝐴𝑖𝑖 𝑧 , from which the coefficients aii(k) were obtained for 
i=1,2. Moreover, we imposed unidirectional interactions from 
y1 to y2, to simulate baroreflex influences, setting a21(k) as the 
coefficients of a 5

th
 order FIR high-pass filter with cutoff at 

0.15 Hz (while letting a12(k)=0, k=1,...,5). Tuning of the 
parameters was performed to yield realistic spectral profiles 
for the two cardiovascular processes. The spectral density of 
the simulated RR process, 𝑆2 𝑓 , is shown in Fig. 1a. 

Fig. 1 reports the computation of the DC from the partial 
spectra (a,b), as well as the computation of the PSSC measure 
from the decomposition of the partial spectra (c,d). The 
analysis is then focused on the LF band (0.04-0.15 Hz). As 
the DC from y1 to y2 declines monotonically in this band 
(gray area in Fig. 1b), derivation of an LF value cannot be 
based on the criteria of taking the maximum. The average 

value of the DC function within the LF band is 𝛾𝑖𝑗
2  𝐿𝐹 =0.64. 

On the contrary, the decomposition of the partial spectra of y2 
given its own dynamics (Fig. 1c), and of y2 given the 
dynamics of y1 (Fig. 1d), evidences clear components with 
central frequency f1=0.1 Hz and well-defined power (gray 
areas); computing the ratio of Eq. (12) yields the PSSC index 

𝛾𝑖|𝑗
2  𝐿𝐹 =0.56. 

This simulation evidences that the frequency-specific 
computation of causality is more objective when it is based 
on partial spectral decomposition, and suggests that the DC 
may tend to yield higher estimated values of the causal 
coupling strength than the PSSC measure. 

IV. CARDIOVASCULAR VARIABILITY ANALYSIS 

To verify the practical applicability of the proposed 

approach, spectral causality was employed to characterize 

the strength of the coupling directed along the baroreflex 

(interactions from SAP to RR interval) at rest and during 

postural stress. Specifically, we considered the beat-to-beat 

time series of RR and SAP measured from the ECG and the 

finger arterial pressure signal in a group of 27 young healthy 

subjects monitored in the resting supine position and in the 

upright position during head-up tilt [10]. For each subject 

and condition, stationary windows of RR and SAP lasting 

N=300 beats were considered for the analysis. The 

corresponding time series r(n) and s(n), n=1,...,N, were used 

as realizations of the bivariate AR process (1), with  

Y=[y1 y2]
T
=[s r]

T
. Model identification was performed using 

vector least squares estimation and setting the model order p 

according to the Akaike information Criterion [2]. 

Instantaneous effects were allowed from s(n) to r(n) to 

account for fast interactions along the baroreflex [3], [8]. 
In such type of analysis, if cardiovascular variability is 

assessed in the frequency domain it is recommended to 
evaluate causality within the LF band, in order to minimize 
the confounding effects of respiration on SAP and RR that 
are primarily confined in the HF band [9], [11]. Accordingly, 
after computing the spectrum of RR as well as its partial 
spectra and their decomposition, the DC from SAP to RR 
was averaged in the range 0.04-0.15 Hz to get 𝛾𝑟𝑠

2  𝐿𝐹 , while 
the PSSC measure was obtained summing all the components 
with central frequency in the same range, i.e. computing 

𝛾𝑟|𝑠
2  𝐿𝐹 =  𝑓𝑘∈𝐿𝐹𝛾𝑟|𝑠

2  𝑘 . 

The results of LF baroreflex spectral causality analysis 
are reported in Fig. 2 (DC measure) and Fig. 3 (PSSC 
measure). Statistical comparison performed by the Wilcoxon 
signed-rank test indicates that, both at rest and during tilt, the 
causal coupling from SAP to RR at LF assessed by the DC is 
significantly higher than that assessed by the PSSC (median: 
0.51 vs. 0.13 for supine, 0.63 vs. 0.41 for upright; P<0.0001 
in both conditions). Moreover, the causal coupling is 
significantly higher in the upright position compared to the 
supine. The increase is detected taking the average DC from 
SAP to RR within the LF band (P=0.0019), and even more 
evidently taking the PSSC of the components belonging to 
the LF band (P<0.0001). These results suggest that, if 
compared with PSSC, the DC tends to overestimate the 
strength of the LF causal coupling along the baroreflex, likely 
as a consequence of the fact that the DC profile within a 
given frequency band results in part from spectral 
contributions related to other bands. Moreover, while both 
DC and PSSC are able to identify the physiologically well-
known larger involvement of the baroreflex during head-up 
tilt [12], PSSC seems to detect the increased LF causal 
coupling with higher statistical confidence. 



  

 

Figure 2. Low frequency (LF) spectral causality analysis of baroreflex 
interactions based on the directed coherence (DC). Plots depict the 
distributions across subjects, depicted as individual values and box-plot, of 
the DC from SAP to RR, 𝛾𝑟𝑠

2  𝐿𝐹 , computed in the supine (black) and 
upright (gray) body positions. *, P<0.05 supine vs. upright. 

 

Figure 3. Low frequency (LF) spectral causality analysis of baroreflex 
interactions based on pole-specific spectral causality (PSSC). Plots depict 
the distributions across subjects, depicted as individual values and box-plot, 

of the PSSC from SAP to RR, 𝛾𝑟|𝑠
2  𝐿𝐹 , computed in the supine (black) and 

upright (gray) body positions. *, P<0.05 supine vs. upright. 

V. CONCLUSIONS 

This study shows that applying spectral decomposition 
[6], [7] to the partial spectra derived from the frequency 
domain representation of bivariate processes [3], [8] provides 
a means to quantify objectively, at specific well-defined 
frequencies, the causal contribution of a source process to the 
power of the target process. Our results document that the 
resulting PSSC measure can be obtained as the power ratio of 
well-identifiable spectral components even when the 
traditional DC does not exhibit peaks in the frequency band 
of interest. Moreover, while averaging the DC values within 
an assigned frequency region can be inaccurate because 
external broad-band oscillations may convey information into 
the region, the separation obtained by spectral decomposition 
allows to focus on the components of interest, ultimately 
resulting in PSSC values which reflect more accurately the 
amount of causal power that the source contributes to the 
target. This aspect can have great relevance in cardiovascular 
variability analysis, where VLF oscillations are often 
predominant and may thus have a relevant effect on the 
evaluation of causality in the LF band of the spectrum. 

While the methodology is presented here for the bivariate 
case, it can be readily extended to the multivariate case 
exploiting the DC representation of vector AR processes [2] 
combined with multivariate spectral decomposition [7]. 
Future studies should also be focused on technical 
developments such as the evaluation of statistical 
significance of PSSC exploiting approaches already in use for 
the DC [13], and on practical validations including the 
comparative analysis of DC and PSSC between different 
physiological signals, inducing different physiological 
challenges, or testing pathological conditions [14]. 
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