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Abstract— High levels of cognitive workload decreases hu-
man’s performance and leads to failures with catastrophic
outcomes in risky missions. Today, reliable cognitive workload
detection presents a common major challenge, since the work-
load is not directly observable. However, cognitive workload
affects several physiological signals that can be measured non-
invasively. The main goal of this work is to develop a reliable
machine learning algorithm to identify the cognitive workload
induced during rescue missions, which is evaluated through
drone control simulation experiments. In addition, we aim
to minimize the computing resources usage while maximiz-
ing the cognitive workload detection accuracy for a reliable
real-time operation. We perform an experiment in which 24
subjects played a rescue mission simulator while respiration,
electrocardiogram, photoplethysmogram, and skin temperature
signals were measured. State-of-the-art feature-based machine
learning algorithms are investigated for cognitive workload
characterization using learning curves, data augmentation, and
cross-validation techniques. The best classification algorithm
is selected, optimized, and the most informative features are
selected. Finally, the generalization power of the optimized
model is evaluated on an unseen test set. We obtain an accuracy
level of 86% on the new unseen datasets using the proposed
and optimized eXtreme Gradient Boosting (XGB) algorithm.
Then, we reduce the complexity of the machine learning model
for future implementation on resource-constrained wearable
embedded systems, by optimizing the model and selecting the
26 most important features. Overall, a generalizable and low-
complexity machine learning model for cognitive workload
detection based on physiological signals is presented for the
first time in the literature.

Index Terms— Cognitive workload, stress, physiological sig-
nals, machine learning, XGBoost, rescue missions.

I. INTRODUCTION

Increasing difficulty of different tasks imposes varying
levels of cognitive workload depending on the human’s
capacities and skills [1]. High levels of cognitive workload
leads to failures with catastrophic outcomes such as accident
[2], since it significantly decreases human’s performance
[3]. Therefore, detecting the high cognitive workload can
improve working conditions and in general the quality of
life in our society.

Cognitive workload detection in high risky tasks has
received special attention. One recent application is in rescue
missions with drones to characterize need for assistance [4].
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When a disaster occurs, the rescuer has to handle many
complex activities involving cognitive workload such as
monitoring the pathway, controlling the drone, searching
for victims, and making a proper decision to manage the
damaged situation [4]. Therefore, detecting the excessive
cognitive workload induced during flying a drone is impor-
tant for preventing accidents and hazards.

An excessive cognitive workload can create very high
stress state [5]. Stress is often recognized as the response
of the human body to adapt to external demands when, as
defined in [6], an important situation taxes or exceeds his
or her capabilities and resources. Both stress and cognitive
workload concepts involve environmental demands and the
ability of the person, or rescue mission operators in particu-
lar, to cope with those demands, although these two concepts
come from different theoretical backgrounds [7].

Nowadays, a reliable detection of both workload and stress
presents a common major challenge, since they are not
directly observable. However, there are several approaches
to assess cognitive workload and stress, i.e., subjective ques-
tionnaires, performance analysis, and physiological reaction
analysis [7]. Subjective questionnaires cannot be used fre-
quently and makes it unsuitable for a continuous workload
monitoring [8]. Performance analysis typically measures the
difference between the expected and the actual performance
[1], but it is not possible to measure the performance online.
However, physiological reaction analysis can be used for a
reliable, non-intrusively, multi-modal (considering multiple
signals), and in a real-time monitoring of the cognitive
workload [4], [8]–[12].

Recently, state-of-the-art studies that target classification
of cognitive workload and stress based on physiological
signals started to employ machine learning techniques [10].
However, to the best of our knowledge, no one has evaluated
so far the model’s generalization on unseen datasets. One of
the first relevant studies is presented by Healey and Picard
[13]. They distinguish levels of driver stress with an accuracy
of 97%, on the training set, with linear discriminant analysis
(LDA) algorithm across 24 drivers using electrocardiogram
(ECG), electrodermal activity (EDA), and respiration (RSP)
signals analysis. Recently, Chen et al. [11] use the same
database as in [13] to address the stress status but for 14
subjects and considering Support Vector Machine (SVM)
machine learning algorithm for workload detection. They
reach an accuracy of over 99% on the training set and 89% in
cross-validation. Both works only use training set or cross-
validation set to assess their accuracy without evaluating its
generalization on unseen (or real-life testing) datasets.



Similarly, Gjoreski et al. [14] evaluate their model using
only a leave-one-out cross-validation. In this case, they
obtain a 73% accuracy detecting stress of daily life activity.
They use an SVM algorithm based on data collected in
55 days from photoplethysmogram (PPG), skin temperature
(SKT), and EDA signal as well as from a 3-axis accelerome-
ter. In fact, most of the state-of-the-art studies evaluate their
methodology on cross-validation sets [8], [10]–[13], which is
not a reliable technique to evaluate the generalization power
in machine learning based approaches [15].

The tasks used to induce cognitive workload and stress is
another factor to analyze when comparing those approaches.
The stronger the stressor agent is, like in real driving task
[8], [11], the better accuracy results are reported. When the
stimuli of the stressor is not very strong, the classification
problem gets harder since more difficult it will be to learn
from the dataset. Therefore, in those cases, we need to
consider an advance machine learning algorithm combined
with a multi-modal analysis that fuses the information in
several physiological signals.

As a result, the main goal of this project is to develop
a reliable machine learning algorithm to identify the cog-
nitive workload induced during rescue missions with drones
simulation experiments. The proposed multi-modal cognitive
workload detection model combines the information in fea-
tures extracted from the ECG, RSP, PPG and SKT signals.

Additionally, we aim for reducing the complexity of our
machine learning algorithm and optimizing its resource usage
for real-time operation. This reduction is particularly impor-
tant in the context of wearable embedded systems, which
are highly constrained in terms of computational capacity,
memory storage, and battery lifetime Our main contributions
are as follows:

• A new and reliable machine learning model for cog-
nitive workload detection based on multimodal physio-
logical signals that is generalizable.

• Minimization of the resource usage and complexity of
the machine learning model by selecting only 26 of
the most important features and optimizing the model’s
hyper-parameters.

• Obtaining an accuracy of 86% on the new unseen
datasets, which is the first assessment of this kind in
the literature for cognitive workload detection in rescue
missions based on physiological signals. Moreover, we
reach an accuracy of 94.8% on cross-validation sets,
which is higher than the latest state-of-the-art studies.

II. COGNITIVE WORKLOAD CLASSIFICATION
METHODOLOGY

A. Experiment Protocol and Setup

The developed simulation environment presented in [4]
is used in this work to track the workload influence on
search and rescue missions with drones. In this experimental
setup, the bio-signals are recorded on users while using the
simulator according to the following scenarios: a baseline
state (physiological condition before starting the flight tasks,
B), a waypoint following task (flying task, F), and flying
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Fig. 1. Signal acquisition protocol. Q: Questionnaire in resting period [4].

while tagging three objects of interest simultaneously (F3M
task). This developed scenario is quite similar to a real search
and rescue mission, where a rescuer has to control a drone
and map the environment identifying the damaged situation.

The data we use in this work was collected from 24
subjects, over two different days. The participants performed
three trials per day. Accordingly, the experiment consists of
data collection in two phases as in Figure 1. In the first
trail the main tasks are divided by a resting period, while in
trials 2 and 3, the sequence of tasks has no resting periods
in between. The cognitive workload level is reported by the
subjects after each task, based on the National Aeronautics
and Space Administration Task Load Index (NASA-TLX)
[16]. Data are labeled based on the rating of stress levels
from the questionnaire as high and low workload , i.e. values
higher than 50% and lower than 12% respectively.

This study is part of the approved protocol number
PB_2017-00295 granted by the Cantonal Ethics Commis-
sions for Human Research Vaud and Geneva. During the
experiments we recorded all the physiological signals using
the Biopac MP160 data acquisition system [17].

B. Cognitive Workload Feature Extraction

In the gathered data we extract several biomarkers based
on the type of the aforementioned physiological signals and
the latest state-of-the-art results [4], [18]. These biomarkers
are segmented in 60-second-length sliding windows. Differ-
ent sliding intervals are used, i.e 60, 50, 40, 30, 20, and
10 seconds to assess the effect of the data overlaping in
the classification performance. Then, for each window, a set
of features is obtained using time-domain and frequency-
domain analysis. The considered biomarkers from each bio-
signals are the following:

• ECG: The RR internals are extracted from the ECG
signals as presented in Figure 2. From the RR interval,
several time and frequency domain bio-markers are
extracted based on the Heart Rate Variability (HRV)
analysis of the RR interval series [19]. Non-linear
features are also extracted from Poincaré plot indicating
vagal and sympathetic function, as reviewed in [20].
They are the following: the length of the transverse axis
(SD1), which is vertical to the line NNk = NNk+1; the
length of the longitudinal axis (SD2), which is parallel
with the line NNk = NNk+1; the ratio SD2/SD1,



called Cardiac Sympathetic Index (CSI); the modified
CSI (SD22/SD1); and the log10(SD2 · SD1), which
is also called Cardiac Vagal Index (CVI) [19].

• PPG: Several bio-markers are computed from the pulse
wave of the PPG signal, which are represented in Figure
2. They are pulse period (PP), pulse transit time (PTT),
pulse wave rising time (PRT), pulse wave decreasing
time (PDT), pulse width until reflected wave (PWR),
and pulse width (PW). From each PPG bio-marker,
time and frequency domain heart rate variability (HRV)
features, as well as Poincaré plot indexes features are
extracted, as aforementioned for the ECG features.

319.5 320 320.5 321 321.5

-0.5

0

0.5

1

E
C

G
 (m

V)

319.5 320 320.5 321 321.5

Time (s)

0

10

20

P
P

G
 (a

.u
.)

NN

PP
PTT

PA

PDT
PWr

PRTPW

Fig. 2. Bio-markers extracted from ECG and PPG signals [18]

• RSP: Several common bio-markers of the respiration
signal are computed and statistical features are ex-
tracted. In particular, we include respiration rate (FR),
time and frequency analysis of respiration period, vol-
ume of air inhaled or exhaled in one minute (Minute
Ventilation), ratio of inhalation to exhalation duration
(IE Ratio), etc.

• SKT: Two features are obtained from the filtered skin
temperature signal: the ∆T that is computed as the
difference between the last (not missing) value of the
window minus the first one and the TPt, as in [18].

Overall, 385 features are extracted and evaluated from the
considered physiological signals.

C. Cognitive Workload Classification

We look at a general machine learning algorithm that can
reliably detect elevated cognitive workload across individu-
als. We consider only the low and high cognitive workload,
which correspond to baseline and F3M tasks, respectively.
The block diagram in Figure 3 shows the methodology steps
considered in this study to obtain a valid model for cognitive
workload classification.

Several state-of-the-art machine learning algorithms are
trained, cross validated, and the best one is selected. In
addition, we consider a wide variety of physiological features
to investigate the contribution of several different biomarkers
for detection of the cognitive workload in the initial models.
Then, the most informative features are selected by remov-
ing the low importance ones. Next, model’s complexity is
controlled by optimizing its hyper-parameters. Finally, the

generalization power of the optimized model is evaluated on
an unseen test set.

1) Cognitive Workload Classification Algorithm Selection:
We explore the best machine learning algorithm in the
context of our cognitive workload detection problem. Ac-
cording to the "No Free Lunch" theorem [21], there is no
one predictive model that performs best for every problem.
Thus, different classifiers can well suit for different problems,
depending on many factors, such as, the problem type, data
size, and data structure [22].

Seven feature-based machine learning algorithms are con-
sidered in this analysis: Logistic Regression (LogReg), De-
cision Trees Classifier (DTC), k Nearest Neighbor (k-NN),
Linear Discriminant Analysis (LDA), Gaussian Naive Bayes
(GNB), SVM, and eXtreme Gradient Boosting (XGB).

We compare the performance of these algorithms versus:
(1) the training data size, using a 10-fold cross-validation
learning curve, and (2) the data augmentation, using an 8-
fold cross-validation score curve over the overlap factor.

Cross-Validation Learning Curve Analysis: A 10-fold
cross-validation to get smooth mean validation and train
score curves is implemented for the seven classification
algorithms, each time with 20% randomly selected data as a
validation set. We observe the validation and training score
of each estimator by varying the number of training samples
on learning curve [22]. This learning curve is one of the main
tools that enables us to find out how much we benefit from
adding more training data and whether the estimator suffers
more from a variance error or a bias error.

Data Augmentation with a Cross-Validation Analysis: Data
augmentation can make a classification algorithm more ro-
bust. It is important however to note that only informative
new samples can improve our model’s performance and
not all of the artificially generated data are informative.
There are several ways for data augmentation, including
adding noise to signals, changing the window length while
segmenting signals, and segmenting signals with a certain
degree of overlap. In this study, we artificially generate
more data using overlap. The overlap factor determines how
much information is shared among successive windows. To
investigate overlap effect on the classification performance of
different algorithms, we implement an 8-fold cross-validation
on dataset with sliding windows of 60, 50, 40, 30, 20, and 10
seconds, which represent overlap percentages of 0%, 16%,
33%, 50%, 66% and 83%.

The training and cross-validation sets should not have any
overlap to avoid having bias in evaluation. Therefore, we
divide the data into training and validation sets based on the
subjects, trials, and the days of the experiments. In total, we
have an 8-fold cross-validation approach applied on each of
the six datasets since the data have been collected in two
days, two trials, and odd or even subject’s number.

2) Cognitive Workload Feature Selection: Our dataset of
size 670 × 385 suffers from high dimensionality. Having
a large feature set makes the model more complex and
increases the chance of overfitting. As a result, the model
becomes more sensitive to error due to variance. Moreover,
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Fig. 3. Block diagram showing the steps to obtain a valid model for cognitive workload classification.

large amount of features leads to increase computational
time, power consumption, and elevates cost when the model
is deployed to embedded systems [23]–[26]. Therefore, re-
ducing the number of features (without much loss of the
total information to suppress model’s complexity) is fully
recommendable [27].

Feature selection [22] is a suitable method to remove worst
performing features by eliminating the irrelevant (features
with low importance) and redundant (highly correlated)
ones. In addition, Recursive Feature Elimination (RFE) is a
feature selection method prposed in [27], which recursively
eliminates the least important features in a loop without
loosing classification performance.

In particular, Recursive Feature Elimination with Cross-
Validation (RFECV) selects the optimal number of features
using RFE based on the cross-validation score for a given
estimator [27]. Therefore, in order to obtain the optimal
number of features, a shuffle-split cross-validation with 10
iteration and validation size of 33% is used with RFE by
taking the selected classifier from the previous section. The
selected number of features is observable from the trend
of the RFECV curve. The curve arrives to an excellent
accuracy and enters in a relatively steady state when the most
informative features are captured. Finally, after applying the
RFECV, a new dataset with a selected subset of features is
considered for the subsequent analysis using hyper-parameter
optimization.

3) Hyper-parameter Optimization: In machine learning,
hyper-parameters represent higher level properties of a model
such as complexity, or how fast a model can learn from a
dataset [28]. The value of a hyper-parameter has a significant
effect on the result of model’s performance. Hyper-parameter
optimization increases the accuracy score of a model, reduces
the complexity and variance of an algorithm, and is useful
in the context of embedded systems, which are limited in
terms of resources. Thus, we explore the optimal values of
the hyper-parameters of the selected classifier for the best
subset of features on the best augmented dataset.

First, depending on the selected model, we choose two
hyper-parameters that have more effect on the result of the
model’s performance. Then, we select a suitable range for
each of the hyper-parameters depending on their usual space
range. Next, we train the selected model multiple times using
cross-validation for different values of each of the hyper-
parameter’s range. Next, we plot a 3D curve representing
the average value of the model’s cross-validation score for

different values of hyper-parameters. We select the optimal
values that lead to the maximum cross-validation score for
both hyper-parameters. Then, we evaluate those values using
validation curves.

4) Generalization: The learned model must be able to
characterize cognitive workload on new, previously unseen
inputs, not just those ones which our model was trained.
The ability of the learned model to fit on unseen data or test
set is called generalization [15].

Although we can optimize the algorithm using validation
set, it is not sufficient to evaluate model’s generalization
power based on validation score because this evaluation is
biased and it not a good representitive of the generalization.
In this study, the dataset from the second repetition in phase
two (i.e., trial two) is considered as the test set. The factors
that determines the generalization power of an algorithm
are (1) the cross-validation score, (e.g., accuracy should be
high) and (2) the gap between cross-validation and test score
should be small.

III. EXPERIMENTAL RESULTS

A. Cognitive Workload Classification Algorithm Selection

We investigate the performance of the LogReg, DTC, k-
NN, LDA, GNB, SVM, and XGB algorithms versus: (1) the
training data size, using a 10-fold cross-validation learning
curve, and (2) the data augmentation, using an 8-fold cross-
validation score curve over the overlap factor. Since the
dataset is balanced, accuracy is considered a valid metric
for performance evaluation.

1) Cross-Validation Learning Curve Analysis: We execute
training runs for the seven classification algorithms with 10-
fold cross-validation. We observe the validation and training
scores of each estimator by varying the number of training
samples on the learning curve.

The result of the learning curve analysis for seven classi-
fiers is shown in Figure 4. The learning curve of the k-NN,
LDA, and GNB algorithms do not converge to a plateau
and their curve trend is not flat. Thus, these algorithms need
more data to become stable. Moreover, the LDA, DTC, and
(to some extent) XGB algorithms suffer from high variance
since there exists a big gap between training and validation
scores and thus, these models are considered complex. Note
that a complex model does not necessarily lead to overfitting
if the validation accuracy is high. The LDA and DTC models
are overfitting because their validation score is low. Although
the XGB algorithm is a complex model, due to the high
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Fig. 4. Learning curves for different classification algorithms.

variance, but it still has a high score in the validation set. In
addition, the GNB algorithm has a high bias since both of the
training and validation scores converge to a low value. The
results of learning curve experiment analysis are summarized
in Table I.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT CLASSIFICATION

ALGORITHMS.

Algorithm Training Acc. Val Acc. (std) Stable Low Variance Low Bias
LogReg 92% 84% (0.03) X X X

DTC 100% 79% (0.04) X X
K-NN 94% 87%(0.03) X X
LDA 100% 69% (0.05) X
GNB 57% 55% (0.03) X
SVM 93% 84% (0.02) X X X
XGB 100% 89% (0.03) X X

The accuracy on the validation set of the XGB classifier
is the highest and after that the k-NN, SVM, and LogReg
algorithms have high accuracy. The LDA and GNB do not
have a good discrimination ability and they have the lowest
performance among other algorithms.

2) Data Augmentation with Cross-Validation Analysis:
The resulting learning curves in Figure 4 show the possi-
bility of model’s performance improvement by increasing
the amount of training data. However, the limited training
data is one of the main constraining factors to achieve
better classification performance in this type of studies.
Therefore, in this work we artificially generate more data
using data augmentation techniques. Our results for data
augmentation with an 8-fold cross-validation experiment is
shown in Figure 5 and is summarized in Table II. Comparing
the performance of the classifiers, the XGB algorithm has
the best performance among the others. The dataset with
50% overlap factor resulted in the maximum cross-validation

accuracy of 86% on the XGB algorithm.
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Fig. 5. Data augmentation with an 8-fold cross-validation analysis

Finally, based on both results of the learning curve and
data augmentation analysis, the XGB algorithm with 50%
overlap dataset is the best algorithm targetting our cognitive
workload classification problem. Moreover, XGB does not
suffer from high bias and its cross-validation accuracy is
the highest. Additionally, the result is reliable since XGB’s
learning curve tends to converge to a plateau, which means
that it does not need more training instances to become
stable. The XGB algorithm is an advance machine learning
algorithm that was developed by Tianqi Chen in 2016 [29]
and until now, it has not been investigated within any of the
studies in the context of cognitive workload classification.

Although the XGB suffers from a high variance, it is
possible to reduce the variance by removing features with
low importance, as well as tuning the parameters of the XGB
model, as we have done in this work.



TABLE II
DATA AUGMENTATION RESULTS WITH CROSS-VALIDATION.

Algorithm Acc. 0% Aug. Max. Acc. %Aug. for Max Acc.
LogReg 79% 79% 0%

DTC 72% 79% 16%
K-NN 78% 79% 50%
LDA 46% 53% 66%
GNB 58% 58% 0%
SVM 76% 78% 66%
XGB 83% 86% 50%
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Fig. 6. Recursive feature elimination with cross-validation curve.

B. Cognitive Workload Feature Selection

We implement the RFECV method on our dataset to obtain
the optimal number of features.Since we have a data-set with
a large number of features, we remove two features in each
step. Figure 6 illustrates that the classification accuracy is
improved with the increasing number of selected features.
After about 26 features the classification accuracy enters in
a relatively steady state. Thus, the selected optimal number
of features is 26. However, we achieve a cross-validation
accuracy of 92.5%. This result implies that we do not lose
information by removing the 359 features. Consequently, the

Fig. 7. Coarse-grain in two-dimensional XGB hyper-parameter

complexity of our XGB model is reduced.

C. Our proposed of XGB Optimization

To avoid falling in a local optimum, we first perform a
coarse-grained two-dimensional hyper-parameter sweeping
to identify the promising region in the space. We show the
mean cross-validation accuracy versus the n_estimators and
the max_depth of the trees in Figure 7. Then, we pick the
coordinate corresponding to the maximum of the mean cross-
validation accuracy, i.e., 100 for the n_estimators and 4 for
the max_depth of the trees, which leads to a mean cross-
validation accuracy of 94.8%.

After finding a promising region in the space of hyper-
parameters, we evaluate the model’s performance with re-
spect to the bias vs. variance trade-off using validation
curves. As a result, the required trade-off for our XGB
model is met at max_depth=4 and n_estimators=80 with
cross validation accuracy of 94.8%.

D. XGB Model Generalization

In this section we evaluate the proposed XGB model
on the new unseen test set.The results are presented in
Table III. As this table shows, the XGB algorithm achieves an
accuracy of 82% on the unseen test set using only the orig-
inal dataset. Moreover, with data augmentation technique,
we could increase the accuracy of the test set from 82%
to 84%. The accuracy on the test set after applying the
RFECV is 84%. Although we eliminate 359 features, there
is no performance loss. Hence, we significantly reduce the
complexity of the model. In addition, we feed the resulted
optimized hyper-parameters into the XGB model, which
improves the performance from 84% to 86% on the test set.
Beside increasing the performance, we increase the training
and inference efficiency and decrease the complexity of the
model by reducing the number of trees from 100 to 80 in
our XGB model.

In addition, the results in Table III highlight that the cross-
validation accuracy in every step is high and the gap between
cross-validation and test accuracy is small. Therefore, we
can conclude that the generalization power of our optimized
XGB model is high. Indeed, this model performs well on
classifying between “low” and “high” cognitive workload
levels.

Overall, although several studies exist in the literature
that employ machine learning algorithms for workload and
stress detection based on physiological signals, neither of
them evaluates and reports classification results on a new
unseen dataset as we perform in this work for the first time..
Infact, state-of-the-art studies evaluate their methodology on
the cross-validation set, which is not reliable enough to
evaluate the generalization power in machine learning. Even
considering only the cross-validation technique, we obtain
higher accuracy level of 94.8% than state-of-the-art cognitive
and stress classification studies based on multimodal physio-
logical signals. Finally, using a careful literature analysis, the
previous best results of cross-validation accuracy for cogni-
tive workload detection based on multimodal physiological
signals reported by [8], [11], [12], [30] are 94%, 90%, 89%



TABLE III
CLASSIFICATION RESULTS EVALUATION USING UNSEEN TEST SET.

Description Aug. RFECV Optimization Val. Acc. Test Acc.
Original data, 385 features, default XGB 83% 82%
50% Aug. data, 385 features, default XGB X 86% 84%
50% Aug. data, 26 features, default XGB X X 92% 84%
50% Aug. data, 26 features, tuned XGB X X X 94.8% 86%

and 86%, respectively. These figures, as the results of this
section have shown, are worse than those obtained with the
new proposed XGB model.

IV. CONCLUSION
In this work we have proposed a new reliable machine

learning algorithm to identify the cognitive workload in res-
cue missions with drones. We have performed an experiment
with 24 subjects playing a rescue mission simulator. We have
evaluated several machine learning algorithms to investigate
their ability to predict the cognitive workload on our dataset.
The XGB algorithm demonstrates the highest performance in
cross-validation. Our multi-modal cognitive workload detec-
tion model combines the information in features extracted
from several physiological signals. We have reached an
accuracy at the level of 86% on the new unseen test sets,
presented for the first time in the literature and an accuracy
level of 94.8% on cross-validation set, which is higher
than state-of-the-art studies. In addition to the successful
classification of the cognitive workload with high accuracy
using the XGB, significant improvements are obtained in
terms of inference and model complexity, for future imple-
mentation on the resource-constrained embedded systems,
by extracting the most important features and optimizing the
learning model. We have shown that the number features
for cognitive workload classification can be as small as 26
features, without any major performance loss.
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