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Abstract— The irreversible damage and eventual heart 

failure caused by untreated aortic stenosis (AS) can be 

prevented by early detection and timely intervention. Prior 

work in the field of phonocardiogram (PCG) signal analysis has 

provided proof of concept for using heart-sound data in AS 

diagnosis. However, such systems either require operation by 

trained technicians, fail to address a diverse subject set, or 

involve unwieldy configuration procedures that challenge real-

world application. This paper presents an end-to-end, fully-

automated system that uses noise-subtraction, heartbeat-

segmentation and quality-assurance algorithms to extract 

physiologically-motivated features from PCG signals to 

diagnose AS. When tested on n=96 patients showing a diverse 

set of cardiac and non-cardiac conditions, the system was able 

to diagnose AS with 92% sensitivity and 95% specificity. 

 

I. INTRODUCTION 

Timely diagnosis of aortic stenosis (AS) improves long-
term patient outcomes by lowering the risk of comorbidity 
[1][2]. Current diagnostic techniques such as cardiac 
auscultation and echocardiography require operation by 
physicians or trained technicians and involve high screening 
costs [3]. The associated clinical and financial burden can be 
mitigated by adopting a fully-automated, low-cost system 
capable of early and reliable AS diagnosis. 

Prior studies have focused on developing and validating 
screening tools that use patient phonocardiogram (PCG) data 
to detect the presence of systolic heart murmurs [4][5]. These 
tools operate on PCG signals by extracting temporal, spectral 
or other features and supplying these as inputs to 
classification engines such as k-nearest neighbors, support-
vector machines, or artificial neural networks [6][7][8].  

The heart sounds used to develop and evaluate these tools 
are collected from carefully-controlled sources such as online 
databases, volunteer participants, clinical subjects presenting 
a specific set of medical conditions, or completely healthy 
individuals [9][10][11]. The data collection protocol requires 
the subject to remain quiet or motionless and may 
additionally call for voluntary apnea [6]. Manual PCG 
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heartbeat-segmentation and feature-extraction processes also 
require time-intensive visual or auditory inspection by trained 
technicians [4][8].  

Although prior studies in this emerging field provide 
good proof of concept, there is still a need for an end-to-end, 
fully-automated system that can provide clinically significant 
diagnoses at the point-of-care without expert supervision. To 
enable widespread adoption, such a system would require 
training and validation across a large heart-sound dataset 
collected in a clinical setting consisting of adult subjects 
showing diverse medical histories.  

This paper presents a fully-automated PCG-based system 
that leverages heartbeat segmentation and data-quality 
assurance to extract physiologically-motivated features for 
AS diagnosis.  

Section II introduces the subject population and describes 
the data collection, noise subtraction, heartbeat segmentation 
and feature extraction framework. Section III presents 
diagnostic results and demonstrates clinical significance of 
the proposed system. 

II. METHODS 

A. Data Collection 

Synchronous PCG and electrocardiogram (ECG) signals 
were acquired after obtaining informed consent from adult 
inpatients (n=96) at Ronald Reagan University of California 
Los Angeles (UCLA) Medical Center (Los Angeles, CA, 
USA) between March 2016 and September 2017. This 
clinical study was approved by the UCLA Office of the 
Human Research Protection Program (Study Identifier: 14-
000670). Subjects included males and females between 19 
and 95 years old (mean age of 57±18 years), between 40 and 
116 kg in weight (mean weight of 79±17 kg) and exhibited 
one or more of 81 types of cardiac and non-cardiac afflicted 
conditions in their medical history. 12 of these 96 subjects 
were diagnosed as having AS by a medical sonographer 
using echocardiography, and these diagnoses were 
independently confirmed through auscultation by a physician.  

PCG signals were acquired at the aortic auscultation 
region on the anterior chest wall at a sample rate of 512 Hz 
using an electret microphone housed in an ABS-plastic body 
with a membrane made of 0.4 mm-thick nitrile elastomer 
[12][13]. The membrane provided coupling with the patient’s 
skin and allowed for transfer of acoustic signals into the 
sensor chamber for measurement by the microphone. The 
location for sensor placement was determined relative to the 
suprasternal notch and did not require physician intervention. 
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ECG signals were acquired using 3 electrodes placed 
proximally on the two upper limbs and abdomen at a sample 
rate of 300 Hz. 1 to 16 minutes of signals (mean duration of 
7±3 minutes) were acquired per subject and stored for offline 
analysis in Matlab (MathWorks, MA, USA). 

B. Automated Heartbeat Segmentation 

Noise artifacts from speech, motion and other 
disturbances were minimized in the PCG signal using a 
spectral noise subtraction algorithm commonly used in 
speech processing. As described in [14], the spectral noise 
estimate was subtracted from raw signal to generate the 
denoised PCG signal. A fourth-order Butterworth band-pass 
filter with cutoff frequencies of 25 and 140 Hz was then 
applied to obtain a PCG signal of improved audio quality.  

ECG signals were band-pass filtered using a fourth-order 
Butterworth filter with cutoff frequencies of 1 and 30 Hz and 
subsequently processed to detect the start and end times for 
individual beats for the purpose of heartbeat segmentation 
[15]. The short-term periodicity of successive cardiac cycles 
was then leveraged to segment the corresponding noise-
subtracted PCG signal for each heartbeat into diastolic 
interval, first heart sound (S1), systolic interval, and second 
heart sound (S2) [16][17]. 

A support-vector machine classifier trained on temporal, 
spectral and model-based features was used to select beats of 
high signal quality. The individual high-quality heartbeats 
selected for further analysis met the following additional 
criteria:  

 Both S1 and S2 sounds were successfully identified 

 Systolic interval was free of any signal excursions 
greater than 50% of S1 or S2 peak amplitude 

 Beat duration was within ±20% of the median beat 
duration for that subject 

2 to 484 eligible beats per subject (mean beat-count of 
127±121 beats) satisfied the above criteria and were included 
in the final heart-sound dataset. 

C. Feature Extraction 

For each eligible heartbeat, the PCG signal corresponding 
to the second half of S1 sound, systolic interval, and first half 
of S2 sound was extracted and band-pass filtered using a 
fourth-order Butterworth filter with cutoff frequencies of 38 
and 154 Hz (Fig. 1). The resulting data vector, dsys, was used 
to extract features to identify systolic murmurs unique to AS 
(Fig. 2). 

First, an amplitude-based feature was developed to detect 
systolic murmurs regardless of their physiological origin. The 
absolute value of the Hilbert transform [18] was used to 
compute the signal envelope of dsys, and the resulting 
envelope was low-pass filtered using a fourth-order 
Butterworth filter with a cutoff frequency of 51 Hz to 
faithfully recreate its shape. The 10th percentile value of the 
filtered envelope provided a good approximation of the 
fluctuating noise level and was used to estimate the noise 
floor for that systolic interval. Then, the first 25% and last 
15% of the envelope were removed to ensure that S1 and S2  
 

 

Figure 1.  Example of segmentation and dsys extraction in a heartbeat. The 
PCG signal extracted as dsys corresponds to the second half of S1, systolic 

interval and first half of S2. 
 

 

Figure 2.  Summary of feature extraction from the dsys vector of a 

heartbeat. One amplitude estimate (A) and one high-frequency estimate 

(fcom) is extracted for each of the 96 subjects. 

sound signals did not influence systolic amplitude 
computation. The 60th percentile value of the remaining 
envelope provided a reliable measure of signal amplitude 
independent of any outlier excursions caused by non-cardiac 
signals and was used to estimate the systolic interval 
amplitude, Asys. All Asys values for a subject were stored in a 
vector, and a corresponding Anorm vector was created by 
normalizing each element of the Asys vector by the mean 
noise-floor estimate for that subject. 

Not all heartbeats in an AS subject were expected to 
exhibit systolic murmurs due to variations in underlying 
physiology and sensor coupling. The final systolic amplitude 
features for each subject were therefore set to the 85th 
percentile value of their Asys and Anorm vectors to reduce the 
impact of systolic intervals that did not demonstrate 
murmurs. 

Next, a frequency-based feature was developed to 
differentiate AS subjects from others with elevated systolic 
amplitude estimates. It was expected that the proximity of the 
aortic auscultation site to the stenosed aortic valve would 
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allow for the recording of minimally-attenuated broadband 
systolic murmurs with greater high-frequency amplitude in 
AS subjects [12][19]. To this end, a 64-point discrete Fourier 
transform (DFT) was computed for a 64-sample (125 ms) 
subvector extracted from the center of dsys after application of 
a Hamming window. The center of mass, fcom, of the systolic 
interval frequency distribution was then calculated as 

 
where xi and pi were the frequency and amplitude of the ith 
bin in the single-sided DFT, and limits 3 and 21 on i 
corresponded to 16 and 160 Hz respectively. All fcom values 
for a subject were stored in a vector and, similar to the 
systolic amplitude estimation process, the final systolic 
spectral feature for each subject was also set to the 85th 
percentile value of the fcom vector. 

The individual Asys, Anorm and fcom feature values for all 96 
subjects were then standardized by subtracting the mean and 
dividing by standard deviation. Finally, Asys and Anorm values 
were summed to yield a single systolic amplitude feature, A.  

Subjects with systolic murmurs were expected to have 
elevated systolic amplitudes, and subjects with systolic 
murmurs due to AS were expected to have elevated levels of 
high-frequency systolic content [19].  

An example of feature extraction in AS and non-AS 
subjects is shown in Fig. 3. The AS subject’s systolic interval 
had feature values of A=3.4 (Fig. 3a) and fcom=0.4 (Fig. 3b). 
In comparison, the non-AS subject’s systolic interval had 
feature values of A=0.41 (Fig. 3c) and fcom= –1.06 (Fig. 3d). 
The AS subject had elevated systolic amplitude and high-
frequency content relative to the non-AS subject. 

For diagnostic purposes, a subject was classified as 
having AS if their A and fcom values exceeded thresholds of 
0.7 and -1.0 respectively (Fig. 4). 

III. RESULTS AND DISCUSSION  

The noise-subtraction algorithm enabled processing of 
low signal-to-noise-ratio data collected without physician 
intervention in the non-controlled and fast-paced 
environment of a preoperative holding area [20]. Noise-
subtracted PCG signals were found to be of qualitatively 
higher audio fidelity than raw signals. The heartbeat-selection 
algorithm enabled detection of high-quality beats even in 
severely-afflicted subjects or those with abnormal sinus 
rhythm. The end-to-end AS diagnosis system operated in a 
fully-automated fashion with a per-subject computational 
runtime of 6 to 125 seconds on a 2.3 GHz Intel Core i7 
processor (mean runtime of 52±22 seconds).  

Mean and standard deviation values of the two features 
for AS and non-AS subjects are summarized in Table I. Two-
sample t-test p-values of 2.2x10-8 and 0.069 for A and fcom 
respectively indicated that the amplitude feature was strongly 
correlated with AS in the diverse population set, whereas the 
spectral feature appeared less significantly linked across the 
same set. However, such an analysis for the spectral feature 
was misleading because while the amplitude feature was 
intended to identify subjects with systolic murmurs, the 
  

 

Figure 3.  Illustration of feature extraction from the systolic interval of an 

AS subject (a,b) and a non-AS subject (c,d). a) AS subject systolic signal 
envelope showing mid-systolic murmur and A=3.4. b) AS subject systolic 

DFT showing elevated high-frequency content and fcom=0.4. c) Non-AS 

subject systolic signal envelope with A=0.41. d) Non-AS subject systolic 

DFT with fcom= –1.06. 

 

Figure 4.  Standardized center-of-mass of systolic frequency distribution 

(fcom) vs. standardized systolic envelope amplitude (A) for n=96 subjects. 
Diagnostic criteria are shown as dashed lines. 11 of 12 AS subjects and 4 of 

84 non-AS subjects show fcom > –1 and A > 0.7. AS subjects visibly cluster 

in the top-right quadrant, whereas non-AS subjects exhibiting other 
systolic-murmur inducing conditions exceed threshold on A but not on fcom, 

and hence appear in the bottom-right quadrant.  

TABLE I.  STATISTICAL MEASURES FOR INDIVIDUAL FEATURES 

Feature 
Mean and Standard Deviation Values 

p-value 
All subjects AS subjects Non-AS subjects 

A 0.00  1.78 2.50  2.08 0.36  1.43 2.2x10-8 

fcom 0.00  1.00 0.49  0.87 0.07  1.00 0.069 
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spectral feature was intended to differentiate between 
subjects with AS and non-AS murmurs within this subset and 
its relatively high p-value across the diverse population set 
was therefore unimportant. 

11 of 12 AS subjects and 4 of 84 non-AS subjects had 
standardized feature values above both diagnostic thresholds, 
corresponding to 92% sensitivity and 95% specificity. 
Standard receiver operating characteristic (ROC) analysis did 
not apply directly to these results because two diagnostic 
thresholds were used on two features. The complementary 
nature of the two features was instead observed by applying 
either threshold first, and then performing ROC analysis of 
the other feature for the remaining set of subjects. For 
example, applying the fcom > −1 criterion removed 16 
subjects, and ROC analysis of the amplitude feature for the 
remaining 80 subjects yielded an area under the curve (AUC) 
value of 0.94 (Fig. 5a). This indicated that the amplitude 
feature provided significant complementary information to 
the spectral feature. Similarly, ROC analysis of the spectral 
feature for the set of 22 subjects with A > 0.7 yielded an AUC 
value of 0.87 (Fig. 5b), further confirming the 
complementary nature of the two features.  

The importance of combining A and fcom for AS diagnosis 
was especially seen in the case of non-AS subjects afflicted 
by other systolic-murmur-inducing conditions such as 
ventricular and atrial septal defect, mitral regurgitation, mitral 
valve prolapse, tricuspid regurgitation and hypertrophic 
cardiomyopathy [21]. These subjects typically exceeded the 
threshold on A, but not on fcom, which indicated that the two 
features were independently informative and specific to AS.  

The noise-subtraction, beat-selection and feature-
extraction algorithms along with clinically significant 
classification results demonstrate the real-world applicability 
of the AS diagnosis system and suggest that similar fully-
automated systems could also be leveraged to diagnose other 
murmur conditions. 

IV. CONCLUSION 

This paper presented an end-to-end, fully-automated and 

clinically-relevant AS diagnosis system leveraging temporal 

and spectral features. PCG signals were collected without 

physician intervention in real-world conditions of a hospital 

using a single acoustic sensor from adult subjects exhibiting 

a diverse set of conditions. Noise-subtraction and beat-

selection algorithms were applied to select high-quality 

heartbeats. Features were extracted from the systolic interval 

of these beats to determine the presence of systolic murmurs 

and to estimate their high-frequency content. Subjects with 

systolic intervals showing elevated amplitude and high-

frequency content were classified as having AS with 92% 

sensitivity and 95% specificity. 
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