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Abstract— Ischaemic stroke is a medical condition caused by
occlusion of blood supply to the brain tissue thus forming a
lesion. A lesion is zoned into a core associated with irreversible
necrosis typically located at the center of the lesion, while
reversible hypoxic changes in the outer regions of the lesion
are termed as the penumbra. Early estimation of core and
penumbra in ischaemic stroke is crucial for timely interven-
tion with thrombolytic therapy to reverse the damage and
restore normalcy. Multisequence magnetic resonance imaging
(MRI) is commonly employed for clinical diagnosis. However,
a sequence singly has not been found to be sufficiently able
to differentiate between core and penumbra, while a com-
bination of sequences is required to determine the extent of
the damage. The challenge, however, is that with an increase
in the number of sequences, it cognitively taxes the clinician
to discover symptomatic biomarkers in these images. In this
paper, we present a data-driven fully automated method for
estimation of core and penumbra in ischaemic lesions us-
ing diffusion-weighted imaging (DWI) and perfusion-weighted
imaging (PWI) sequence maps of MRI. The method employs
recent developments in convolutional neural networks (CNN)
for semantic segmentation in medical images. In the absence
of availability of a large amount of labeled data, the CNN is
trained using an adversarial approach employing cross-entropy
as a segmentation loss along with losses aggregated from three
discriminators of which two employ relativistic visual Turing
test. This method is experimentally validated on the ISLES-
2015 dataset through three-fold cross-validation to obtain with
an average Dice score of 0.82 and 0.73 for segmentation of
penumbra and core respectively.

I. INTRODUCTION

Cerebrovascular accident (CVA), more commonly known
as stroke, is one of the most common causes of death
and disability in the world [1]. It is characterized by a
sudden focal neurological deficit due to cerebral infarction
caused by poor vascular supply. Ischaemic stroke is the most
common type of stroke [2], caused by occlusion of a blood
vessel due to atherosclerotic stenosis, or by an embolus
of atherosclerosis in a large artery, or may be of cardiac
origin. This perfusion deficit causes irreversible necrosis of
a small area of cerebral tissue which becomes completely
devoid of blood supply. This area is called the core of
the lesion and is surrounded by an area of hypoperfusion,
which develops a reversible functional impairment due to
temporary hypoxia. If the perfusion is not restored, this
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Fig. 1: Overview of the proposed method

surrounding area which is called the penumbra of the lesion
undergoes delayed apoptosis over the following days and
weeks to form a permanent structural lesion with irreversible
loss of function [3]. Early intervention to restore perfusion
to this salvageable area can reverse the impairment and
prevent the extension of the lesion [4]. Therefore, one of
the most crucial investigations into stroke lesion detection is
evaluating the extent of penumbra as compared to the core of
the lesion, which helps the physician decide on interventions
like thrombolytic therapy. Multisequence magnetic resonance
imaging (MRI) is classically employed, especially using
perfusion-weighted imaging (PWI) and diffusion-weighted
imaging (DWI), where PWI indicates the region of hypo-
perfusion as in core and the penumbra, while DWI indicates
the region of restricted diffusion as in core.

Challenge: There is a wide range of variability in visual
appearance across these sequences, which along with growth
in the number of sequences makes symptomatic biomarker
discovery for clinical use challenging.

Approach: In this context we propose a method for core
and penumbra estimation employing recent developments in
deep learning (DL) employing adversarial learning of a con-
volution neural network (CNN) for semantic segmentation as
illustrated in Fig. 1. The limited availability of annotated data
in stroke segmentation makes it difficult to train deep neural
networks for automated detection with good generalisability
and hence an adversarial approach is employed.

Related work: Random Fields (RF) based techniques have
been most commonly employed for penumbra segmenta-
tion [5], [6], [7] on the ISLES-2015 dataset. Patch based
stacked sparse auto-encoder for feature learning followed by
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(a) Phase 1: Train with segmentation loss (b) Phase 2: Train discriminator 1

(c) Phase 3: Train discriminator 2 (d) Phase 4: Train discriminator 3

(e) Phase 5: Train with adversarial loss (f) Effect of including adversarial loss during training

Fig. 2: Training of the proposed framework using adversarial losses from three relativistic discriminators in addition to
segmentation loss, for boosting ability to detect file lesions.

a support vector machine (SVM) classifier have also been
employed as a data-driven approach [8]. A multi-scale 11-
layer deep 3D CNN with a 3D conditional random field
(CRF) based post-processing was proposed by [9]. More
recently, several other approaches [10] have been proposed
based on a modification of UNet [11] for later versions of
the ISLES challenge on stroke lesion segmentation.

Organization: The problem statement is defined in Sec. II
with the proposed solution detailed in Sec. III. Sec IV
outlines the various experiments conducted for validation of
performance. Results and their discussion of the results are
presented in Sec. V and Sec. VI concludes the work.

II. PROBLEM STATEMENT

We consider the task of lesion segmentation to be carried
out on a per slice basis. Given all the MRI sequences for

a particular slice, it is arranged as a T × M × N sized
tensor I with T denoting the number of MRI sequences
and M ×N being the spatial size of each slice. We model
the segmentation problem as that of a three class semantic
segmentation where each pixel is classified as belonging to
either of the {un-annotated brain tissue and background}
denoted as class 0, or {penumbra} denoted as class 1 or
{core} denoted as class 2.

III. METHOD

In Phase 1 the segmentation CNN (netseg(·)) in Fig. 2(a)
predicts Ô = netseg(I) where Ô is a tensor of size
C ×M ×N with C denoting the number of tissue classes,
and the objective is to minimize the cross entropy loss
JSeg(·) between Ô and O, where O is the ground truth.
Subsequently in Phase 2 the first relativistic Turing test



TABLE I: PERFORMANCE COMPARISON WITH BASELINES

Baseline Dice Precision Recall
Pen. Core Pen. Core Pen. Core

BL1 0.44± 0.38 0.10± 0.17 0.47± 0.41 0.14± 0.12 0.42± 0.37 0.15± 0.26
BL2 0.77± 0.04 0.33± 0.31 0.75± 0.06 0.39± 0.35 0.80± 0.05 0.30± 0.29
BL3 0.76± 0.05 0.47± 0.41 0.78± 0.03 0.75± 0.22 0.75± 0.08 0.50± 0.44

Proposed 0.82± 0.06 0.73± 0.05 0.82± 0.05 0.80± 0.08 0.83± 0.08 0.68± 0.08

discriminator in Fig. 2(b) learns to identify the ground
truth (GT) annotation for penumbra from the segmented
map obtained from (netseg(·)) by minimizing the binary
cross entropy loss JD1(·). Similarly in Phase 3 the second
discriminator in Fig. 2(c) learns to identify GT annotation of
core from the segmented map by minimizing the binary cross
entropy loss JD2(·). In Phase 4 the discriminator learns to
predict which channel contains the penumbra when fed with
a shuffled channels in the input as in Fig. 2(d) thus minimiz-
ing the binary cross entropy loss JD3(·). Finally in Phase 5
the (netseg(·)) parameters are optimized to be minimize the
adversarial loss JAdv(·) = −αJD1(·) − βJD2(·) − γJD3(·)
and thus learn to be able to produce segmentation which
closely resembles the GT. This impact of incorporating the
adversarial losses in learning is finely visible in Fig. 2(f)
where finer details of core and penumbra are evident in our
segmentation approach.

Segmentation CNN: The segmentation CNN (netseg(·))
used is an encoder-decoder like architecture [12] with the
encoder having layer definitions similar to that of VGG11
[13]. Concatenation of features across matched layers in the
encoder and decoder is present in this architecture along with
the passing of max pooling indices for up-sampling in the
decoder. We additionally add batch normalization after each
convolutional layer. The VGG11 like encoder is initialized
with ImageNet pre-trained model weights.

Discriminator networks: The three discriminators
(D1, D2, D3) are a shallow convolutional neural network
with five convolutional layers each with 4 × 4 kernels,
interleaved with batch normalization layers and leaky ReLU
non-linearity. Sigmoid activation is added to the last layer.
The first layer has 32 channels. The number of channels in
the subsequent layers is multiplied by a factor of 2.

IV. EXPERIMENTS

Dataset description: This method is experimentally val-
idated using the Ischaemic Stroke Lesion Segmentation
Challenge (ISLES) - 2015 dataset1. We have used the SPES
dataset from the challenge which consists of data from 30
subjects with an average of 70 slices per patient. Seven se-
quence maps viz. T1c, T2, DWI, CBF, CBV, TTP and Tmax
of 94 × 110 size on average is available for each patient.
We have trained our network using only the DWI, TTP and
Tmax. Whitening transform is performed on the slices using
the mean and standard deviation of corresponding sequences
in the training set. Performance evaluation was conducted
using 3-fold cross-validation. In each fold, 20 subjects were
used for training, 5 for validation and 5 for testing.

1www.isles-challenge.org/ISLES2015/

Baselines: The following baselines are used for compar-
ison of performance. BL1: SegNet[14] trained using only
segmentation loss. BL2: SegNet trained using adversarial
losses as employed in the proposed framework. BL3: SUM-
Net trained using segmentation loss only. The performance
of the proposed method in comparison with the baselines
is tabulated in Tab. I. The reported scores are mean and
standard deviation across the three folds on the held-out test
set. The performance of the proposed method is evaluated
in comparison with the baselines using Dice coefficient,
precision, and recall.

Training setup: The segmentation network and the dis-
criminators were trained using Adam optimizer for 200
epochs, with a learning rate of 0.001 without any augmen-
tation of the dataset. In the adversarial loss, α = 0.001,
β = 0.001 and γ = 0.001.

V. RESULTS AND DISCUSSION

Qualitative results for the proposed method on a sample
slice from the test set is illustrated in Fig. 3 along with the
sequences and the ground truth. The models compared were
trained on the same fold of the data. It can be observed
that the performance of segmentation improves significantly
with the proposed adversarial training framework. There
is a notable reduction in over-segmentation and under-
segmentation.

Also, it can be seen from Tab. I that the proposed method
exhibits the least standard deviation in terms of dice coef-
ficient across different folds of the dataset. This shows the
generalization capability of the proposed framework despite
being trained with a few annotated samples.

VI. CONCLUSION

Early estimation of the extent of penumbra is one of the
most crucial aspects of stroke management. This delineation
between core and penumbra helps the physician decide
on thrombolytic therapy that could reverse the damage to
the salvageable tissue. Traditional methods of acute stroke
lesion estimation utilize distinct image processing algorithms
and handcrafted machine learning-based feature extraction
techniques, to separately segment core and penumbra from
DWI and PWI respectively. Our proposed method gives a
unified framework that uses both diffusion and perfusion
maps as inputs for deep learning based supervised learning of
features to segment both core and penumbra with comparable
accuracy. The limited availability of annotated diffusion and
perfusion maps for the same patient has lead to over-fitting
of networks in training data. This is mitigated by the use of
adversarial learning.



(a) Tmax (b) TTP (c) DWI (d) GT

(e) SegNet Core - BL1 (f) SegNet Pen. - BL1 (g) SegNet Core - BL2 (h) SegNet Pen. - BL2

(i) SUMNet Core - BL3 (j) SUMNet Pen. - BL3 (k) Proposed Core (l) Proposed Pen.

Fig. 3: Performance comparison for different baselines and our approach for estimating the core and penumbra using
multisequence MRI. (a-e) denotes the different sequences used which constitutes the input to the network, (d) represents
the GT with black representing the unannotated class 0, gray representing penumbra class 1 and white representing core as
class 2. (e-f) represent the results of BL1, (g-h) for BL2, (i-j) for BL3 and (k-l) for our proposed approach. RED denotes
under-segmentation, GREEN denotes over-segmentation and WHITE denotes proper segmentation.
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