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Abstract— Pulse wave velocity has emerged as important 

diagnostic parameter due to its association with various cardio-

vascular disorders, such as hypertension, vascular aging, and 

atherosclerosis. Long-term monitoring of pulse wave velocity 

can be beneficial in carrying out accurate diagnosis of the 

underlying conditions or even for an early prediction of cardio-

vascular diseases. Doppler radar has emerged as a promising 

technology for contact-less monitoring and assessment of 

physiological parameters. In this study, we aimed at: i) as a 

first step, assessing the feasibility of measuring arterial pulse 

waves at the femoral region using the Doppler radar 

technology, and consequently, ii) estimating the pulse transit 

time between the heart-femoral regions as well as between the 

carotid-femoral regions using simultaneous Doppler radar 

measurements. The results of our feasibility study demonstrate 

that the arterial pulse waves in the femoral region, arising due 

to cardiac activity, can be estimated using the Doppler radar 

technology in a contact-less fashion. Furthermore, 

simultaneous pulse wave measurements at distinct surface 

locations using this technique can enable contact-less estimation 

of the pulse transit time and consequently pulse wave velocity.  

 

 

I. INTRODUCTION 

Non-invasive measurement of pulse wave velocity 
(PWV) has been one of the most sought-after technologies as 
long term variations in PWV has been demonstrated as a risk 
factor for, and an early predictor of,  vascular aging, 
hypertension, atherosclerosis, and overall cardio-vascular 
mortality [1]. PWV in clinical settings is routinely estimated 
by measuring the resulting pulsatile activity due to the 
pumping activity of the heart at two distinct locations on the 
surface of the body. The distance between the two locations 
is divided by the phase difference of their pulse waveforms to 
obtain the PWV between the location pair.  

Tonometry approaches, such as PulsePen, non-invasively 
detect the pressure waveform by means of applanation 
tonometry [2].  Due to their inherent precise positioning 
requirements, tonometry based measurements are difficult to 
procure for long-term monitoring of PWV. As an alternative, 
approaches using skin-mounted mechanotransducers, such as 
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Complior [3], have been introduced. Mechanotransducer 
approaches capture surface level mechanical deflections in 
time domain and thereby calculate the phase difference in 
pulsations at the two measurement locations. Photo-
plethysmography (PPG), routinely used for pulse-oxymetric 
measurements, is yet another skin-mounted technology 
capable of delivering non-invasive PWV measurements. PPG 
PWV approaches employ infra-red radiation emitter-detector 
pairs to track vascular level volumetric changes due to the 
blood flow and use the phase difference of these changes 
between the two locations to calculate the PWV [4]. Skin-
mounted transducers have less positioning constraints but are 
problematic when used in long-term over-night measurement 
settings due to dislocation of transducer montages and 
discomfort to the wearer.   

In contrast to the above-mentioned approaches that need 
surface level contact with the subject under measurement, 
camera-based approaches are truly non-invasive and require 
no physical contact. Jeong et al demonstrated contact-less 
Pulse Transit Time (PTT) estimation using a high-speed 
CMOS digital video camera under flickering free lighting 
conditions [5]. Although contact-free, visible light imaging 
approaches suffer from environmental lighting dependencies, 
which greatly influences the accuracy of long-term 
measurements. Furthermore, performing over-night 
measurements are challenging due to low ambient lighting 
conditions. In order to overcome the problem of ambient 
lighting, infrared imaging approaches to capture surface level 
arterial pulsations have been proposed. Garbey et al 
demonstrated contact-less measurement of cardiac pulses 
based on thermal imaging of the carotid region [6].  Using a 
similar setup, Chekmenev et al analyzed the pulsatile nature 
of the blood flow in the temporal artery [7]. Such thermal 
imaging based measurements at multiple locations could 
enable PWV estimations independent of ambient lighting 
conditions. Nevertheless, the cost of the equipment coupled 
with the high computational efforts involved have limited this 
technology to research applications. 

Doppler radar has emerged as a promising technology for 
contact-less monitoring and assessment of physiological 
parameters. Contact-less estimation of respiration, limb 
movements as well as heart activity using Doppler radar have 
been demonstrated [8-10]. In this study, we aimed at: i) as a 
first step, assessing the feasibility of measuring arterial pulse 
waves at the femoral region using the Doppler radar 
technology, and consequently, ii) estimating the PTT 
between the heart-femoral regions as well as between the 
carotid-femoral regions using simultaneous Doppler radar 
measurements. 
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Figure 1.  Relative positions of the volunteer and the Doppler radar prototype for contact-less measurement of arterial pulse waves at the femoral region.

II. METHODS 

A. Doppler Radar 

The Doppler radar prototypes used in this study as well as 
the related signal processing have been described in detail in 
one of our earlier works [9].  

B. Experimental Setup 

Upon informed consent, a healthy volunteer (Male, 183 
cm, 55 years) with no prior history of cardiovascular 
complications was recruited for the study. Fig. 1 illustrates 
the experimental setup used for assessing the feasibility of 
Doppler derived pulse wave measurements at the femoral 
region. The prototype was placed directly above the left 
femoral region at a distance of 15 centimeters. The heart 

activity of the volunteer (reference measurement) was 
assessed using a standard pulse plethysmography 
measurement system (Philips IntelliVue MP50).  

Fig. 2 illustrates the experimental setup used for PTT 
estimations using simultaneous Doppler radar measurements. 
In order to achieve this, two independently operating Doppler 
radar prototypes were employed to measure the pulsatile 
activity at two different locations on the body surface 
simultaneously. To estimate the PTT between the heart and 
right femoral regions, prototype 1 was placed directly above 
the heart region while prototype 2 was placed above the right 
femoral region. Both prototypes were at a perpendicular 
distance of 15 centimeters from the surfaces of measurement. 
Similarly, to estimate the PTT between the left carotid and  

Figure 2.  Relative positions of the volunteer and the Doppler radar prototypes for the assessment of Pulse Transit Time between the heart and the femoral 

regions. 
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Figure 3.   A beat-to-beat comparison between the plethysmographic (Reference) and the prototype measurements from the volunteer during the 30-second 

breath hold period. The y-axis, ‘Amplitude’, is a dimensionless reference. The reference heart rate measurement from the period was 51 beats per minute, 

while the prototype estimated 50 beats per minute.   

the right femoral regions, prototype 1 was placed directly 

above the left carotid region at a perpendicular distance of 

15 centimeters, while prototype 2 remained over the right 

femoral region. The straight-line distances between the 

regions of heart-femoral as well as between carotid-femoral 

were measured to be 50 and 70 centimeters, respectively. In 

addition to the Doppler radar measurements, a standard 3-

lead electrocardiogram (ECG) of the volunteer was 

recorded.

Figure 4.  Pulse waves recorded using simultaneous Doppler radar measurements at the heart (blue) and femoral (red) regions with the reference ECG 

(grey)
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Figure 5.  Phase difference between  pulse waves recorded at the regions of 

heart and right femoral artery using simultaneous Doppler  radar 
measurements. Heart Femoral Pulse Transit Time (hfPTT) = tFemoral – 

tHeart = 47 milli-seconds.  

BioRadio 150 (Great Lakes NeuroTechnologies, Ohio, 

USA) data acquisition system synchronized all Doppler 

radar channels as well as the reference ECG signals while 

performing simultaneous measurements. The volunteer 

performed a breath hold over a period of 30 seconds to 

minimize the interference of respiratory motion. The 

volunteer was clothed at all times during the period of 

measurements. 

III. RESULTS 

As a first step, we assessed the feasibility of measuring 
arterial pulse waves in the femoral region using the Doppler 
radar technology in a contact-less fashion. Fig.3 illustrates 
the outcome of these measurements with the pulse 
plethysmography signal as a reference for the heart activity 
of the volunteer.  During the breath-hold period, the pulse 
waves derived using Doppler radar measurements are in 
synchrony with the reference pulse plethysmography signal. 
Furthermore, the reference heart rate measurement from the 
period was 51 beats per minute, while the prototype 
estimated 50 beats per minute. 

Upon performing successful Doppler radar 
measurements in the femoral region as a first step, we 
attempted carrying out simultaneous measurements at the 
heart-femoral regions as well as at the carotid-femoral 
regions. Fig 4. illustrates the outcome of simultaneous 
Doppler radar measurements at the heart and the right 
femoral regions, with the ECG signal as the reference for the 
heart activity of the volunteer. As observed before, both 
Doppler derived pulse waves, i.e. from the heart as well as 
the femoral regions, are in synchrony with the reference 
ECG signal. Furthermore, a distinct phase difference  

Figure 6.   Phase difference between  pulse waves recorded at the regions 
of left carotid and right femoral artery using simultaneous Doppler  radar 

measurements. Carotid Femoral Pulse Transit Time (cfPTT) = tFemoral – 

tCarotid = 125 milli-seconds. 

between the pulse waves from the heart and the femoral 
regions can be observed. Fig. 5 illustrates this phase 
difference in detail for a single cardiac cycle. The heart-
femoral pulse transit time (hfPTT), calculated as the phase 
difference between the peaks of the pulse waves, is 47 milli-
seconds for this cardiac cycle. When divided by the straight-
line distance of 50 centimeters between both the regions, this 
results in an effective PWV of 10.7 meters per second.           

Fig. 6, similarly, illustrates the phase difference between 
the pulse waves from the carotid and the femoral regions for 
a single cardiac cycle. The carotid-femoral pulse transit time 
(cfPTT) is 125 milli-seconds for this cardiac cycle, and for a 
straight-line distance of 70 centimeters between both the 
regions, this result in an effective PWV of 5.6 meters per 
second.  The PWV estimates derived using the Doppler 
radar measurements fall within the normal range for healthy 
adults [11].  

A limitation of this feasibility study is the precise 
positioning of the Doppler radar sensors over the regions of 
interest. Furthermore, the estimated PWVs could be 
compared to standard PWV measurements using 
oscillometeric or tonometric procedures, as used in clinics.  

IV. CONCLUSION 

This work showed that the contact-less Doppler radar 
technology is feasible to estimate the arterial pulse waves in 
the femoral region, even under covered conditions. 
Furthermore, simultaneous pulse wave measurements at 
distinct surface locations using this technique can enable 
contact-less estimation of the arterial pulse transit time and 
consequently arterial pulse wave velocity.  

In conclusion, the Doppler radar technology could be a 
promising candidate for contact-less long-term pulse wave 
velocity measurements.  
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