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Abstract— Dynamic MRI is a technique of acquiring a series 

of images continuously to follow the physiological changes over 

time. However, such fast imaging results in low resolution 

images. In this work, abdominal deformation model computed 

from dynamic low resolution images have been applied to high 

resolution image, acquired previously, to generate dynamic high 

resolution MRI. Dynamic low resolution images were simulated 

into different breathing phases (inhale and exhale). Then, the 

image registration between breathing time points was performed 

using the B-spline SyN deformable model and using cross-

correlation as a similarity metric. The deformation model 

between different breathing phases were estimated from highly 

undersampled data. This deformation model was then applied to 

the high resolution images to obtain high resolution images of 

different breathing phases. The results indicated that the 

deformation model could be computed from relatively very low 

resolution images. 

I. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is a non-invasive 
medical imaging modality, applied in numerous diagnostic 
applications in radiology. MRI offers high spatial resolution 
for detecting disease and pathologic changes in tissue. 
Interventional MRI (iMRI) has advantages in term of non-
ionizing radiation compared to Computed Tomography (CT) 
and high spatial resolution together with multi-contrast tissue 
properties compared to ultrasound. MRI-guided intervention 
differs from daily clinical MRI since a time series of images 
needs to be continuously acquired throughout the procedure, 
known as dynamic imaging. However, there has been a 
tradeoff between spatial and temporal resolution in such types 
of imaging. When the temporal resolution is critical, especially 
for dynamic liver imaging, spatial resolution is limited [1-2], 
the obtained time series images are considered as low 
resolution images compared to high resolution images in 
clinical routines. In practice, iMRI requires visualization of the 
lesion for percutaneous procedures. It is also challenged by 
breathing-related motion which can degrade image quality and 
lead to difficulties to delineate lesions [3-5]. 

In addition, there are several examinations reported the 
effect of motion in MRI as well as numerous studies aimed to 
make use of deformation motion model [6-8]. Nonetheless, 
there are several existing data available from previous scans, 
such as high resolution planning scans, but been neglected. 
Utilizing prior knowledge such as spatial resolution from high 
resolution images have not been explored. 

The goal of this work is to overcome the limitation of 
spatial resolution in dynamic imaging by extracting 
deformation model related to breathing motion from fast low 

 
 

resolution time series data, with the assumption that breathing 
pattern should not change so much over time and then utilizing 
that deformation model by applying it on the available prior 
high resolution conventional scans to obtain high resolution, 
high quality dynamic images. 

II. METHODOLOGY 

A. Data acquisition and simulating dynamic imaging 

Abdominal imaging data for this work was acquired on a 
SIEMENS MAGNETOM Skyra (3T) MR Scanner using T1 
vibe sequence (TR: 3.64ms, TE: 1.45ms, Flip angle: 9.0 deg) 
with SPAIR fat suppression, distortion correction (2D) and 
pre-scan normalization. The field of view (FoV) of this 
acquisition was 384x216 mm, acquired 120 slices with a base 
resolution of 384x216 pixels (Voxel size: 1.0×1.0×1.6 mm). 
All the slices were then cropped from the center to get only the 
abdomen to obtain the final resolution of 268x216x120 pixels, 
which has been considered as the high resolution image in this 
work. Dynamic imaging was simulated by acquiring the data 
in two different breathing positions (inhale and exhale), where 
the subject was asked to perform breath-hold in the particular 
breathing position. Image acquired in inhale has been 
considered as the time point 1 (TP1) and exhale as the time 
point 2 (TP2) of a dynamic imaging. 

B. Simulating low resolution data 

Acquired data was artificially undersampled to simulate 
low resolution dataset, which is considered as the TP1 and TP2 
of a low resolution dynamic imaging. Undersampling was 
performed by taking the center of the k-space (preserving the 
aspect ratio) of each slice and zero-filling the rest of the k-
space. Undersampling was performed by taking 50% and 25% 
of the k-space, making the effective resolution as 190x153 
pixels and 134x108 pixels respectively. To test the robustness 
and limitations of this approach, the data were highly 
undersampled by taking only 3%, 2%, 1% and 0.5% of the k-
space (effective resolutions: 46x37, 38x31, 26x21, 18x15 
respectively). Fig. 1 shows the comparison between 100% 
sampling mask (fully sampled) and examples of three 
undersampling masks, along with the resultant undersampled 
images for 50%, 3% and 0.5% undersampled.   

C.  Image Registration  

A 3D image registration toolbox ANTs (Advanced 
Normalization Tools) [9] was employed in order to build the 
deformation model. B-spline symmetric image normalization 
method (SyN) [10-11] was used for capturing the non-rigid 
deformation in abdominal organs, such as liver. In this work, 
cross-correlation was used as the similarity matric, spline 
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Figure 1.  (a) and (b) 100% undersampling mask (i.e. fully sampled) and 

High resolution image, (c) and (d) 50% undersampling mask and 

undersampled image, (e) and (f) 3% undersampling mask and undersampled 

image , (g) and (h) 0.5% undersampling mask and undersampled image 

 

distance was set to 40 mm, and the single cross-correlation was 
used as the similarity matric, spline distance was set to 40mm, 
and the single precision operation was performed to reduce 
computing overhead. During the registration, the 
undersampled inhale breathing phase (TP1) was selected as a 
moving image, while undersampled exhale phase (TP2) was 
selected as the fixed image. 

D.  Application of deformation in multi-resolution  

Deformation field extracted by performing registration on 
undersampled images, was merged with the high resolution 
TP1 using the B-Spline interpolation, to obtain high resolution 
TP2, so-called the deformed image. The resultant deformed 
image has then been compared with the real high resolution 
TP2 to measure the performance of this approach.  

III. RESULTS AND DISCUSSIONS 

For performance comparison of the undersampled 
registrations, an additional deformation model was extracted 
by registering high resolution TP1 and TP2 (also referred as 
100% of k-Space), and then that deformation model was 
applied on the high resolution TP1 to obtain the deformed 
image for 100% of k-Space. As no undersampling was 
involved, this results in the best possible output from this 
proposed approach. The deformation model obtained from this 
were then been treated as the ground-truth model.  

A.  Deformation field and comparisons 

The deformation field shows the movement of voxels from 
TP1 to TP2 in different planes (i.e. x,y,z). The deformation 
field obtained using ANTs, as shown in Fig. 2, shows how 
much each voxel has moved in each plane.  

The deformation models obtained from registering various 
levels of undersampling were then compared against this 
ground-truth model based on the Hausdorff distance between 
them and in terms of percentage of errors, as shown in Fig. 3. 
It was observed that the more the level of undersampling were 
used for image registration, more error it contains. But the 
resultant deformed images are still very close to the actual high 
resolution TP2. 

 

 

Figure 2.  An example of deformation field obtained by registering 

undersampled image (0.5% of the k-Space) in (a) x-plane, (b) y-plane and 

(c) z-plane  

Figure 3.  Comparison of the deformation fields obtained with various 

resolutions, against the deformation field obtained using high-resolution 

image, using (a) Error Percentage (b) Hausdorff Distance  

(a) (b) 
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B. Comparison of the deformed images  

The deformed images from various levels of 

undersampling were compared with the actual high resolution 

TP2 image using various similarity measures, such as - 

Pearson correlation coefficient, percentage of error, mean-

squared error and Structural Similarity Index (SSIM), as 

shown in Fig. 4. It was observed for all of the mentioned 

similarity matrices, that the resultant deformed images 

obtained by registering 50% or 25% undersampled data, are 

very similar to the one obtained by registering full-sampled 

data. When more highly undersampled data (3%, 2% and so 

on) were used for registration, the quality of the resultant 

deformed image decreases, but still quite similar to the actual 

high resolution TP2, as shown in Fig. 5. The highest 

undersampled data that was used for registration was 0.5% of 

the original k-Space, and as observed, this approach still 

works for such a highly undersampled data.  

C. Discussions 

Image registration is a time-consuming process. For 

undersampled data, the image registration should take less 

time as it contains less number of pixels and also should 

decrease the computation overhead. However, currently in 

this research work the k-Space were zero-filled during 

undersampling, in order to preserve the pixel resolution of the 

images. As the undersampled data used in this work had the 

same pixel resolution as the fully-sampled data, the image 

registration process took almost the same time as registering 

fully-sampled data. In future, this approach will be tested 

without zero-filling the k-space while undersampling, 

reducing the actual pixel size.  

 

 
 

Figure 4.  Comparison of the Deformed Image with the actual high 

resolution Time Point 2 using various similarity measures 
(a) Pearson correlation coefficient (b) Error Percentage  

(c) Mean-squared Error (d) SSIM 

 

 

 
 

Figure 5.  Sample output (Deformed Image) of the proposed  approach for different levels of undersampling (i.e. 50%, 25%, 3%, 2%, 0.5% of the fully 

sampled k-space), along with  the substraction (Substracted Image) of the output from the High Resolution time point 2 (TP2) 

  

(b) (a) 

(d) (c) 
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IV.  CONCLUSION 

This proposed approach can make use of deformation 

models extracted from highly undersampled data. This could 

be helpful for acquiring dynamic images which can offer both 

high spatial and temporal resolution. The lowest effective 

resolution that this approach has been tested to be working 

with is 18x15 pixel (0.5% of the k-space of the high resolution 

image used for testing). The approach is yet to be tested for 

undersampling without zero-filling the k-Space, to speed up 

the registration process. The clinical feasibility of this 

approach have also to be investigated.  
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