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Abstract— While cardiovascular diseases (CVDs) are com-
monly diagnosed by cardiologists via inspecting electrocardio-
gram (ECG) waveforms, these decisions can be supported by
a data-driven approach, which may automate this process. An
automatic diagnostic approach often employs hand-crafted fea-
tures extracted from ECG waveforms. These features, however,
do not generalise well, challenged by variation in acquisition
settings such as sampling rate and mounting points. Existing
deep learning (DL) approaches, on the other hand, extract
features from ECG automatically but require construction of
dedicated networks that require huge data and computational
resource if trained from scratch. Here we propose an end-to-end
trainable cross-domain transfer learning for CVD classification
from ECG waveforms, by utilising existing vision-based CNN
frameworks as feature extractors, followed by ECG feature
learning layers. Because these frameworks are designed for
image inputs, we employ a stacked spectrogram representation
of multi-lead ECG waveforms as a preprocessing step. We also
proposed a fusion of multiple ECG leads, using plausible stack-
ing arrangements of the spectrograms, to encode their spatial
relations. The proposed approach is validated on multiple ECG
datasets and competitive performance is achieved.

Index Terms— Transfer Learning, Cardiovascular Disease,
Deep Learning, Health Informatics

I. INTRODUCTION

Cardiovascular diseases (CVDs) cause millions of deaths
annually and more than three quarters of the world’s deaths
from CVDs occur in low- and middle-income countries [1].
Traditional diagnosis of CVDs mainly employs interpreta-
tion of ECG recordings, which requires precise acquisition
devices and high expertise of the clinicians (i.e. cardiologists)
that are limited in deprived areas. Cardiologists visually
inspect the conventional 12-lead ECG waveforms as images
when making diagnosis. However, such process is tedious
and can be highly subjective. Automatic approaches have
been proposed to extract domain-specific handcrafted ECG
features both in time- and frequency-domains for CVD
diagnosis [2], [3], [4], [5]. However, these methods lack
robustness and do not generalise across variations in patient
characteristics and device specifications.

Recently, deep learning (DL) methods have been studied,
mainly for atrial fibrillation (AF) detection from ECG ([6],
[7], [8], [9], [10]) and photoplethysmogram ([11], [12])
waveforms. However, mostly a dedicated network is designed
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and trained from scratch with only problem-specific time-
series ECG waveforms [6], [8], [9], [10], without exploiting
existing networks from other domains such as computer
vision. Spectro-temporal analysis method proposed in [7] is
shown to improve AF detection; however, its requirement of
prior QRS complex detection makes the proposed approach
complex. In addition, existing works mainly utilise single-
lead ECG waveform, and thus the fusion of multiple-leads, in
the conventional 12-lead ECG acquisition, is left unexploited.

In this paper, we present a cross-domain transfer learning
that exploits (existing) vision-based deep neural networks for
automatic diagnosis of CVDs from 12-lead ECG record-
ings. To do so, each ECG lead is analysed in frequency
domain and its spectrogram is computed separately followed
by normalization and stacking of the spectrograms of the
remaining leads. The proposed framework is an end-to-
end trainable and enables us (i) to provide cross-domain
knowledge transfer from images in computer vision to vital
signs in clinical setting; (ii) to avoid training of a dedi-
cated (and sometime complex) network from scratch; and
(iii) to encode the intrinsic relationships among ECG leads.
Importantly, we analysed and verified the effectiveness of
different stacking arrangements of multiple ECG leads on
the diagnostic performance, which is the first of its kind to
the best of authors’ knowledge. The proposed framework
is validated on both public (ICBEB) and private (GGH)
datasets, each containing thousands of CVD patients.

The paper is organized as follows: Section II presents the
proposed framework including the stacked spectrogram com-
putation. Section III provides the experiments, i.e. datasets,
parameter setup and results and discussion. Finally, Sec-
tion IV concludes the paper.

II. METHOD

The proposed method for CVD classification from a 12-
lead ECG is shown in Fig. 1. Each lead is segmented
into multiple windows, and its frequency-time (spectrogram)
representation is obtained by applying a fast Fourier trans-
form (FFT), F(·). The spectrogram contains the frequency
response magnitude at different frequency bins. Let Ei

n be
the nth window of the ith ECG lead, the spectrograms can
be presented as Ēi

n = F(Ei
n) after the FFT. We further



Fig. 1: Overview of the proposed approach

Fig. 2: Steps of generating a stacked spectrogram from a
12-lead ECG.

normalize Ēi
n as follows

Ėi
n =

Ēi
n

max(Ēi
n)
× 255.

Ėi
n exhibits image-like characteristics as the normalization

bounds its values to [0, 255] (Fig. 2). This representation
enables transfer learning from existing vision models pre-
trained on large image datasets, e.g. ImageNet [13]. Spec-
trogram representation also provides robustness against vari-
ation in sampling rate and mounting positions [14]. This
approach also helps to reduce the amount of data required
for training. A pre-trained GoogLeNet [15] is used to extract
hidden-layer CNN features from stacked spectrograms. Later,
we build a new hidden layer inside the GoogLeNet pipeline
to learn ECG features followed by a Softmax layer for
classification.

We also studied different arrangements of stacking the
spectrograms from multiple leads and experimented their
effects on CVD diagnosis performance. A conventional 12-
lead ECG contains the following leads I, II, III, V1, V2,
V3, V4, V5, V6, aVF, aVL and aVR, and the correspond-
ing electrodes are often mounted as shown in Fig. 3 (a).
The leads are categorized into 4 subgroups, each sub-
group represents a vertical stacking of three leads: G1 =
(I, II, III), G2 = (V 1, V 2, V 3), G3 = (V 4, V 5, V 6)
and G4 = (aV L, aV R, aV F ). We studied three arrange-
ments for stacking the spectrograms (Order-I, Order-II and

TABLE I: Summary of ICBEB dataset. SD: standard devi-
ation; Min: minimum duration; %: percentage of records in
each class.

Time unit (s)
Class #records Mean SD Min Median %
Normal 918 15.43 7.61 10.00 13.00 13
Atrial fibrillation (AF) 1098 15.01 8.39 9.00 11.00 16
First-degree atrioventricular block (I-AVB) 704 14.32 7.21 10.00 11.27 10
Left bundle branch block (LBBB) 207 14.92 8.09 9.00 12.00 3
Right bundle branch block (RBBB) 1695 14.42 7.60 10.00 11.19 25
Premature atrial contraction (PAC) 556 19.46 12.36 9.00 14.00 8
Premature ventricular contraction (PVC) 672 20.21 12.85 6.00 15.00 10
ST-segment depression (STD) 825 15.13 6.82 8.00 12.78 12
ST-segment elevated (STE) 202 17.15 10.72 10.00 11.89 3

Total 6877 15.79 9.04 6.00 12.00 100

Order-III). Order-I = (G1, G2, G3, G4) and Order-II =
(G1, G4, G2, G3) further stack the subgroups vertically as
shown in Fig. 3 (b) and Fig. 3 (c), respectively. Finally,
Order-III stacks the subgroups in similar order as Order-II
but horizontally as shown in Fig. 3 (d).

III. EXPERIMENTS

A. Datasets

The ICBEB dataset is obtained from the China physio-
logical signal challenge at the 7th International Conference
on Biomedical Engineering and Biotechnology (ICBEB)1.
ICBEB contains 12-lead ECG records from 6, 877 subjects,
among which 5, 959 subjects are diagnosed with one (or
more) of eight cardiovascular abnormalities and the remain-
ing 918 subjects are diagnosed with normal conditions (see
Table I). Among 5, 959 abnormal cases, 477 are diagnosed
with two or more CVDs. The ECGs are sampled at 500 Hz
and their temporal duration ranges between 6 and 60 seconds.
The abnormalities are atrial fibrillation (AF), first-degree
atrioventricular block (I-AVB), left bundle brunch block
(LBBB), right bundle brunch block (RBBB), premature atrial
contraction (PAC), premature ventricular contraction (PVC),
ST-segment depression (STD) and ST-segment elevated (STE).
Though the majority of the ICBEB classes have balanced
number of samples, a few suffer from an imbalance problem.
Particularly, each of LBBB and STE contains only 3% of the
whole samples in the dataset. In addition to the abnormality
label, the meta data also contains age and gender of the
subject that could be exploited in future validations.

The GGH dataset is collected in southern areas of
China, and contains 12-lead ECG waveforms from 21, 241
anonymised patients, i.e. 15, 578 myocardial infarction (MI)
and 5, 663 normal cases, sampled at 500 Hz. MI cases could
be either ST-elevation myocardial infarction (STEMI) and
non-STEMI. In addition to the conventional leads, GGH also

1http://www.icbeb.org/Challenge.html
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Fig. 3: Visualisations of different arranging orders experi-
mented to stack spectrograms from a conventional 12-lead
ECG. Note Order-I and Order-II are rotated by +90o for
better visualisation.

contains V3r, V4r and V5r leads. After preprocessing, we
found that 3, 722 myocardial infarction (MI) cases contain
multiple ECG waveforms with zero values (i.e. flat) and
hence were discarded from the upcoming experiments. Only
the common 12 leads are considered and additional 3 cases
that do not contain all of the 12 conventional leads are
avoided. 136 normal cases are further discarded with similar
procedures. In total, data from 11, 853 MI and 5, 528 normal
patients in GGH dataset are used in the experiments. Note
that there is imbalance among classes in GGH dataset as the
MI cases are at least twice more than the normal cases.

B. Parameter setup

In this section we describe the setup of parameters em-
ployed during validation. First, we set the window length of
a sample to be 10 s and a spectrogram is computed for each
window. No overlapping is applied between samples gener-
ated from a patient data. A Hamming window is employed
for a short-time Fourier transform computation of each chunk
( 1 s) with 95% overlapping between subsequent chunks in
order to obtain a smooth spectrogram representation. Since
the energy is mainly accumulated in the low frequency band,
only the first 25% of the frequency coefficients are used
in order to avoid redundancy and reduce the spectrogram
dimension to 125 x 181 per lead.

For CNN feature extraction, we used inception-
v3 of GoogLeNet, particularly its next-to-last layer
(i.e. ‘pool 3 : 0’), which provides a feature dimension of
2, 048. To avoid overfitting, we keep the dimension of the

new hidden layer to 10 and a ReLU activation is employed
on it. The dimension of the Softmax layer resembles the
number of CVDs in each corresponding datasets, i.e. nine
for ICBEB and two for GGH. For the end-to-end training,
Adam optimizer is used with learning rate = 0.001, training
steps = 10, 000, training batch size = 128. 80%-train and
20%-test split is applied. The whole experiment is repeated
10 times and average accuracy is computed. Due to the
class-imbalance in the datasets, the sparse-softmax-cross-
entropy is utilised as a classification loss. In addition, batch
normalization is applied on the new hidden layer. The
framework is implemented in Tensorflow platform with
Python 3.5. As a baseline, we validate the CNN features
using SVM within MATLAB 2017a environment. Both
linear and Gaussian kernels are experimented.

C. Results and discussion

We first experimented with the three stacking arrange-
ments, i.e. Order-I, Order-II and Order-III, on the GGH
dataset across different classification methods and results are
shown in Fig. 4. The methods include SVM validation with
linear and Gaussian kernels, end-to-end training with Soft-
max layer, and end-to-end (EE) training with a new hidden
layer (HL) and a Softmax layer. Order-III achieves superior
performance compared to Order-I and Order-II, consistently
across the four methods. This suggests that Order-III better
encodes the spatial relationships among the leads. In addi-
tion, Order-III benefits from its square-like representation
compared to rectangular Order-I and Order-II representations
(Fig. 3). This is because GoogLeNet framework automati-
cally crops input images to 299 x 299, as a result Order-
I and Order-II lose much of their frequency information.
Though the dimensions of the final spectrograms in Order-I
and Order-II are exactly equal, the results show that Order-II
consistently outperforms Order-I, which further strengthens
the need to encode the spatial relationships among ECG
leads.

For the remaining experiments, Order-III is employed.
The proposed framework provides encouraging performance
when validated on both ICBEB and GGH datasets (see Ta-
ble II). As expected, the raw CNN features are less discrimi-
nant as demonstrated in the inferior baseline performance of
SVM (linear) and (Gaussian). Gaussian kernel outperforms
linear kernel in both datasets. Later, EE (HL+Softmax) is
shown to improve the ICBEB baseline performance from
43.6% of SVM (Gaussian) to 49.9%. Similarity, EE (Soft-
max) improved the GGH performance from 79.1% to 85.8%.
However, the new hidden layer tends to slightly degrade the
performance for GGH as the model starts to overfit due to
the high-dimension of CNN features from inception-v3.

The GGH classification task (binary) is less challenging
compared to the nine-class classification task of ICBEB. As
a result, lower diagnostic performance resulted on ICBEB,
which is partly due to the lack of sufficient number of
training data available as there are only ≈ 611 samples per
class for training. Though about 8% of abnormal patients in
ICBEB are diagnosed with multiple CVDs, we used only a



Fig. 4: Effect of different stacking orders on the classification
performance validated on the GGH dataset.

TABLE II: Results of the proposed framework compared
against SVM-based baseline and validated on both ICBEB
and GGH datasets. Note that Order-III is used during stack-
ing. EE: end-to-end training; HL: new hidden layer.

Accuracy (%)
Methods ICBEB GGH
SVM (Linear) 36.2± 0.2 80.1± 0.0
SVM (Gaussian) 43.6± 0.4 82.8± 0.1
EE (Softmax) 49.8± 1.2 85.8 ± 0.9
EE (HL+Softmax) 49.9 ± 0.7 85.5± 0.4

single label ground truth for each case. As a result, we might
mistakenly treat it as incorrect when the inference provides
one of the other labels in multi-label cases. Furthermore,
our proposed model considered all ECG leads as images
while techniques reported to achieve higher accuracy in the
challenge required extraction of each ECG cycle, treated each
lead independently, and exploited additional temporal encod-
ing frameworks such as long short-term memory (LSTM)
recurrent networks. Generally, compared to a random guess
of 11%, it is encouraging to obtain ≈ 50% accuracy on
ICBEB using cross-domain knowledge transfer learning,
without explicitly training a dedicated CNN network. The
classification performance on GGH dataset could be further
improved by sub-labelling the MI cases into to STEMI and
non-STEMI categories and apply three-class classification.

IV. CONCLUSIONS

We proposed an end-to-end trainable cross-domain transfer
learning for data-driven diagnosis of CVDs (from ECG
waveforms) that potentially supports decision-making and
hence improves patient care. Our stacking spectrogram rep-
resentation of multi-lead ECG enables us to utilise existing
pre-trained vision-based deep networks as feature extractors.
We also analysed the fusion of multiple ECG leads using a
plausible spectrogram stacking arrangements. The proposed

framework is validated on two datasets and results show that
competitive performance is achieved using transfer learning
without training a dedicated network from scratch. Future
work includes reducing the high-dimension of CNN features
using an auto-encoder that can optimises the reconstruction
and classification errors simultaneously. Furthermore, cross-
modal knowledge transfer could be adopted to exploit multi-
sensor information beyond ECG waveforms.
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