Abstract:
Electrical stimulation is a promising approach to enhance cell viability and differentiation. We aim to develop a stimulation device for the investigation and realization...Show MoreMetadata
Abstract:
Electrical stimulation is a promising approach to enhance cell viability and differentiation. We aim to develop a stimulation device for the investigation and realization of cartilaginous cell engineering. The stimulation setup is capable of applying well-defined electric fields to several scaffolds at the same time. The setup consists of a flat plate with multiple test tubes for the scaffolds. A flexible printed circuit board containing a separate pair of electrodes for each tube is fixed at the bottom of the plate. In this context, numerical simulation using Finite Element Method (FEM) is a valuable tool to gain a better understanding of the electric field distribution in such devices. The thin insulating layer of the flexible printed circuit board allows sufficient field strength to be achieved at moderate input voltages but presents challenges for modelling. In simulations, thin layers would usually require a fine discretization with many degrees of freedom (DOF). This leads to large models, which are expensive regarding memory and computation time. Based on the 'contact impedance' boundary condition available in COMSOL Multiphysics® 5.4, an alternative approach is proposed that can model thin layers in capacitively coupled setups. The resulting electric field distribution in the new stimulation setup is presented and discussed.
Published in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 23-27 July 2019
Date Added to IEEE Xplore: 07 October 2019
ISBN Information:
ISSN Information:
PubMed ID: 31947326