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Abstract— Attending to the speech stream of interest in
multi-talker environments can be a challenging task, particu-
larly for listeners with hearing impairment. Research suggests
that neural responses assessed with electroencephalography
(EEG) are modulated by listener’s auditory attention, revealing
selective neural tracking (NT) of the attended speech. NT
methods mostly rely on hand-engineered acoustic and linguistic
speech features to predict the neural response. Only recently,
deep neural network (DNN) models without specific linguistic
information have been used to extract speech features for
NT, demonstrating that speech features in hierarchical DNN
layers can predict neural responses throughout the auditory
pathway. In this study, we go one step further to investigate
the suitability of similar DNN models for speech to predict
neural responses to competing speech observed in EEG. We
recorded EEG data using a 64-channel acquisition system
from 17 listeners with normal hearing instructed to attend to
one of two competing talkers. Our data revealed that EEG
responses are significantly better predicted by DNN-extracted
speech features than by hand-engineered acoustic features.
Furthermore, analysis of hierarchical DNN layers showed that
early layers yielded the highest predictions. Moreover, we
found a significant increase in auditory attention classification
accuracies with the use of DNN-extracted speech features over
the use of hand-engineered acoustic features. These findings
open a new avenue for development of new NT measures to
evaluate and further advance hearing technology.

I. INTRODUCTION

The challenge of attending the target speech signal while
ignoring other sounds is an extensively-studied problem
known as the “cocktail party” problem [2]. To date, research
on "cocktail party" environments has progressed significantly
to a point where it is now possible to decode (i.e., classify)
the attended speech by quantifying “neural tracking" (NT) of
speech [3], [4], i.e., by comparing the neural activity of the
listener, recorded with electroencephalogram (EEG), to the
activity of multiple candidate speech sources in a listening
environment [5], [6]. NT methods have allowed to assess the
real benefits of the hearing aids [6], [7].
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NT methods involve encoding of the speech by estimating
the temporal response function (TRF) that linearly maps
time-lagged speech signals to EEG. NT methods proposed
in the literature mostly rely on hand-engineered acoustic and
linguistic speech feature that include for example speech
envelope, spectrogram, pitch, phonetic and lexical features
[8]–[12]. Despite the successful usage of acoustic-linguistic
features in NT, it remains unclear to what extent language
models [13], [14] may be used to extract relevant features.

Modern artificial intelligence models using deep neural
networks (DNN) revolutionized the field of speech represen-
tation showing that DNN models, without specific language
knowledge, can derive speech features that correlates well
with neural responses recorded with functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG)
and electrocorticography (ECoG) [15]–[17]. Furthermore,
recent work has suggested that DNN models can successfully
predict speech comprehension from the neural responses
recorded with fMRI [18]. Lastly, Li et. al. [17] demonstrated
that speech features in hierarchical DNN layers can bet-
ter predict neural responses than hand-engineered acoustic-
phonetic features, as observed in high signal-to-noise (SNR)
ECoG signals, throughout the auditory pathway [17]. How-
ever, whether DNN-derived speech features can better predict
noninvasive, low SNR EEG responses and, classify attention
in multi-talker listening environments remains unknown.

To address this issue, we compare a wide variety of
hand-engineered acoustic and DNN-derived speech features
in light of human neural responses to competing speech.
Specifically, we analyze the EEG responses of 17 healthy
younger adults. During 45 min-long sessions the listeners
were instructed to attend to one of two competing talkers. We
trained a variety of NT models and compare their ability to
linearly map speech onto the EEG recordings. Furthermore,
we investigate the hierarchy of layers in the DNN models.
Finally, we trained a variety of NT models and compare their
ability classify the attended speech.

II. METHODS
The experimental protocol was reviewed and approved

by the ethics committee for the capital region of Denmark
(journal number H-21065001). The study was conducted
according to the Declaration of Helsinki, and all the par-
ticipants gave a written consent prior to the experiment.

A. Study Design
1) Participants: Participants comprised 17 younger adults

(9 males, mean age 29.0, SD 6.4). All participants were
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native Danish speakers, had normal or corrected-to-normal
vision, had no history of neurological disorders, dyslexia, or
diabetes mellitus, and had clinically normal hearing.

2) Stimuli and Recording: During the experimental ses-
sion presented in this study, participants were asked to attend
to one of two different audiobooks narrated in Danish. The
stimuli comprised 33 ∼1min-long segments from audio-
book recordings of Himalaya i sigte (a story of traveling
in the Himalayas) read by a female talker and Simon (a
biography on Simon Spies) read by a male talker, and
sampled at 44.1 kHz. Prolonged silent periods in the speech
stimuli longer than 500ms were shortened to 500ms. Stimuli
were routed through a sound card (RME Hammerfall DSP
multiface II, Audio AG, Germany) and were played via
loudspeakers (Genelec 8040A; Genelec Oy, Finland) at an
average intensity of 70 dB SPL each positioned ±30◦ to
the left or right of the center. EEG data were acquired at
a sampling rate of 8192Hz with a BioSemi ActiveTwo 64-
channel EEG recording system in 10-20 layout.

3) Experimental Session Design: A total of 33 trials were
conducted, with the first trial used for training and 32 trials
used for analysis. Each trial consisted of 5 s of silence,
1min of speech mixture and two 2-choice questions on
attended story to keep the participants alert. The 32 trials
were divided into 8 blocks of 4 randomized consecutive
trials, with 2 blocks for each of “male right”, “male left”,
“female right” and “female left”. Before each block, a visual
cue on the screen and 5 second of the to-be-attended speech
were presented indicating talker (male or female) and the
side (left or right) to be attended.

B. Neural Data Analysis

1) EEG Preprocessing: The EEG data were re-referenced
to the average of the mastoid electrodes, band-pass fil-
tered between 0.1 and 10Hz and re-sampled to 100Hz.
Subsequently, signal components of non-neural origin were
removed using a procedure based on independent component
analysis [19]. Next, the data were filtered between 1 and
10Hz and normalized to zero mean and unit variance. In a
final step, data were segmented into trials of 59 s duration
from 0 to 59 s relative to the onset of the speech.

2) Neural Tracking of Speech:
a) Quantifying Brain Prediction Scores: The TRF

framework allows to study how the brain processes compet-
ing speech. It includes two stages: a training stage to derive
TRFs for the each talker and a testing stage to quantify how
well EEG responses can be predicted. In the training stage,
time-lagged speech features of each talker S are linearly
mapped to the EEG response(s) R of the listener based on
TRF W derived via regularized linear regression (rLR) with
a parameter λ to control for overfitting [3]:

W =
[
H(S)TH(S) + λI

]−1H(S)R (1)

where H(∗) is a Hankel matrix (see [3] for more details). In
the testing stage, EEG responses are predicted as:

R̂ = H(S)W (2)

The quality of the prediction is quantified in terms of a brain
prediction score (BPS) measuring the correlation (a Pearson’s
r) between the true and reconstructed EEG responses.

b) Classifying Auditory Attention: The NT framework
allows to classify auditory attention (i.e., identify the at-
tended speech) in multi-talker environments. In order to
classify which of the streams a listener attended to, two
TRF models Watt and Wign from (1) are assembled to
become two competing prediction models for every single
EEG channel. Next, the EEG signals (R̂att and R̂ign) are
independently predicted from the attended (Satt) and the
ignored (Sign) speech signals. To estimate which of the
predicted EEG signals (R̂att versus R̂ign ) are most likely
representing the attended speech, we compute channel-by-
channel brain prediction scores BPSatt and BPSign. Fi-
nally, we compare BPSatt and BPSign values averaged
across all EEG channels and the signal with the highest BPS
is classified as the attended speech.

C. Speech Feature Extraction

1) Hand-Engineered Speech Features: Hand-engineered
acoustic features considered for this study included speech
envelope (the root-mean-square of 10ms windows and scaled
by raising the value to the power of a compression param-
eter of 0.3 or 1 indicating no compression), the envelope
derivative, spectrogram (100 linearly spaced components
between 0Hz and 8 kHz computed with a short-time Fourier
transform at 100Hz, and scaled by a compression param-
eter of 0.3), Mel Frequency Cepstral Coefficients (MFCC)
(13 components representing different frequencies between
20Hz and 8 kHz, as well as their derivatives and the second
derivative for a total of 39 features) and pitch (absolute
and relative pitch, and pitch change computed as in [17]).
The MFCC feature set was also used as an initialization of
the labels for DNN training. Similar to [17], we included a
baseline model comprising full acoustic features.

2) DNN-extracted Speech Features: We employ the Hid-
den unit BERT (HuBERT) DNN model - a transformer-based
self-supervised model for speech feature learning [14]. A
major component of HuBERT model training is applying the
predictive loss over the masked portions of speech driving
the model to learn a fused acoustic and language feature
set over the speech input. Using ECoG recordings, it has
recently been shown that the HuBERT DNN model yielded
the best BPS among the benchmarks DNN models [17].

Our goal is to extract relevant speech features in different
DNN layers in order to use them as inputs to the NT models.
With the speech material presented in our study being in
Danish, different methods are employed to obtain a Danish
version of HuBERT DNN model. For a complete description
please refer to [1].

Since both the audio used in the experiments and the
LibriSpeech corpus [20] of the English HuBERT model stem
from audiobooks, we collected a similar Danish speech cor-
pus for training purposes. Only continuous, clearly spoken,
Danish speech without background noise was included. The
main source was speech materials used in previous studies



TABLE I
OVERVIEW OF THE TRAINED HUBERT DNN MODELS. L9 DENOTES

LAYER 9 IN DNN HUBERT MODEL.

DNN Name Data set Weight source Labels
English 960 h English Random 100, from MFCC
Danish 65 h Danish Random 100, from MFCC
SSFT A1 65 h Danish English 250, from L9 of Danish

conducted at Eriksholm Research Centre. Additionally, the
publicly available Danish audiobooks found on LibriVox [21]
were included. For all speech files, the starts of the files with
an introduction (e.g., the name of the reader or the book
title) were removed. Mono channel audio signal was created
by averaging the stereo channels, resampled to 16 kHz and
divided into equally long segments. To avoid a strong effect
of individual speakers, the amount of speech data was limited
to 300 files per speaker. In total 3900 such audio files (>
65 h) were prepared and divided into training and validation
sets in a common 80/20 split.

An important component of the HuBERT DNN models are
the artificially created labels with which the DNN is trained.
Based on MFCCs, all speech segments were clustered with
k-means. These clusters were used as labels for the DNN
training. We considered three major HuBERT DNN models,
see Table I. First, the original ’base’ HuBERT DNN model,
referred to as the ’English DNN’ in this study, was trained
on 960 h of continuous English speech from the LibriSpeech
corpus [14]. Second, the Danish HuBERT DNN model, here
referred to as the ’Danish DNN’, used the ∼65 h data set of
Danish speech for training with randomly initialized weights
which mimics the original training of the base English DNN
[14]. Third, a self-supervised fine-tuning (SSFT) was added
as an additional training option. The English DNN is used to
initialize the network weights. Here, only the latest layers of
the pre-trained DNN are replaced with new layers to allow
prediction of different clusters. The training objective during
SSFT is the HuBERT objective of classifying segments of
the unseen speech data. We refer to this model as SSFT A1.

III. RESULTS & DISCUSSION

A. Predicting EEG from DNN-Extracted Speech Features

We first test whether DNN-extracted speech features lin-
early predict EEG responses. To this aim, we fit a rLR to
predict the EEG activity elicited by the attended speech from
the HuBERT model input with the same speech. We then
compute a BPS, i.e. the correlation between the true EEG
responses and the EEG responses predicted from the rLR. On
average across EEG channels, the BPS for an English DNN
HuBERT model are significantly distributed above zero with
the mean BPS of 0.051 at layer 1 (L1), 0.054 at layer 5 (L5)
and 0.05 at layer 12 (L12). Using speech features from the
Danish DNN HuBERT model, a lower BPS of 0.035 at L1
to 0.015 at L12 were achieved.

Second, we evaluate whether DNN-extracted speech fea-
tures can better predict EEG responses than hand-engineered
acoustic features (see Fig. 1-2). Similar to the speech from
HuBERT model, we first fit a rLR to predict the EEG

activity from the acoustic features. On average, a BPS of
0.039, 0.042, 0.029, 0.037, 0.032 and 0.038 for acoustic
envelope, all envelope features, pitch, MFCC, spectrogram,
and all features, respectively, were observed. Next, we com-
pute a normalized BPS, i.e., the squared BPS from the
DNN HuBERT model divided by the squared BPS with all
envelope features as input to the rLR. Lastly, we observe
that both the English DNN and the SSFT DNN A1 HuBERT
models provide normalized BPS scores that are significantly
higher than 1 at their best layer (p < 0.05, 2-sided t-tests
with BPS for 64 EEG channels). Our results are consistent
with previous findings suggesting that DNN-derived speech
features correlates well with the neural activity [15]–[17].

Fig. 1. The normalized mean brain prediction scores (BPS) for predicting
the EEG activity elicited by the attended speech from the HuBERT model
input with the same speech. A BPS higher than 1 signifies a higher quality
of prediction from DNN-extracted speech features than from the hand-
engineered acoustic features.

Third, analysis of hierarchical DNN layers shows that
early layers (layer group 1: L1-L5) yielded higher BPS than
later layers (layer group 2: L6-L12; p < 0.05 for one-
way ANOVA factor ’layer group’). This is in line with
recent studies providing evidence for the speech processing
hierarchy within auditory cortex [22], [23].

Fig. 2. The mean BPS for each subject predicting the EEG responses
from the HuBERT DNN models averaged across all trials and channels.

B. Attention Classification with DNN-extracted Speech

Classifying auditory attention is notoriously challenging
[4]. This issue poses strong limitations on the future ap-
plication of NT methods to hearing devices. While hand-
engineered acoustic features can be used in NT methods



to decode attention, we show that DNN-extracted speech
features yield results that are consistently higher than those
described in neuroscientific literature (see Fig. 3). We find a
significant increase in classification accuracy with the use of
DNN-extracted features over the use of acoustic features.

For the best acoustic feature set (envelope features), a
mean attention (attended vs. ignored speech) classification
accuracy of 75% (SD 43%) was achieved. With the best DNN
feature set (from the L5 of the English DNN), the attention
classification accuracy improved to 79% (SD 40%), yielding
statistically significant differences (p = 0.0319, 2-sided t-test
with 17 subjects).

Fig. 3. Auditory attention classification results per subject shown for the
predictions based on the best acoustic feature set and the best DNN feature
set (features from the layer 5 of an DNN trained only on English audio).

IV. CONCLUSIONS

We propose a new framework to predict EEG responses
to attended speech. Overall, the present study suggests DNN
models for speech can retrieve information that correlate to
speech processing hierarchy. Interestingly, our analyses high-
lights that EEG responses are significantly better predicted
by DNN-extracted speech features than by hand-engineered
acoustic features. Furthermore, analysis of hierarchical DNN
layers shows that early layers yield the highest predictions.
Finally, we find a significant increase in auditory attention
classification accuracy with the use of DNN-extracted speech
features over the use of hand-engineered acoustic features. In
sum, NT methods could used to evaluate and further advance
hearing technology and we propose a new approach to
increase EEG prediction and attention classification accuracy.
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