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Facial Action Unit Detection using 3D Face Landmarks for Pain
Detection

Kevin Feghoul!, Mondher Bouazizi®> and Deise Santana Maia®

Abstract— Automatic detection of facial action units (AUs)
has recently gained attention for its applications in facial
expression analysis. However, using AUs in research can be
challenging since they are typically manually annotated, which
can be time-consuming, repetitive, and error-prone. Advance-
ments in automated AU detection can greatly reduce the time
required for this task and improve the reliability of annotations
for downstream tasks, such as pain detection. In this study, we
present an efficient method for detecting AUs using only 3D
face landmarks. Using the detected AUs, we trained state-of-
the-art deep learning models to detect pain, which validates
the effectiveness of the AU detection model. Our study also
establishes a new benchmark for pain detection on the BP4D+
dataset, demonstrating an 11.13% improvement in F1-score and
a 3.09% improvement in accuracy using a Transformer model
compared to existing studies. Our results show that utilizing
only eight predicted AUs still achieves competitive results when
compared to using all 34 ground-truth AUs.

I. INTRODUCTION

The Facial Action Coding System (FACS) [1] is a com-
prehensive taxonomy that objectively describes anatomical
movements of the face. This coding system is composed
of 32 non-overlapping fundamental actions of individual
muscles or groups of muscles, known as action units (AUs).
By combining AUs, any facial expression can potentially
be encoded, allowing inference of an individual’s emotional
state. Each AU is identified by an ID and can characterize
several emotions. For example, AU number 9, which repre-
sents nose wrinkle, can indicate emotions such as disgust or
pain. Table I show different emotions and their corresponding
AUs [2].

Automatic pain detection is of high interest due to its
potential impact in various fields, such as medical diagnosis,
remote monitoring, and robotics. With the recent advances
in machine learning techniques, deep learning [3] is now the
de facto choice for dealing with unstructured data, leading
to significant breakthrough in computer vision [4], speech
recognition [5], and natural language processing [6]. As such,
deep learning is of great significance for the task of pain
detection, as it enables the recognition of human pain through
facial expressions and physiological data [7].

Privacy concerns are one of the main challenges faced
by researchers conducting experiments on human subjects.
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The inability to share valuable and well-constructed datasets
impedes progress in various fields, including pain and emo-
tion recognition. In this study, we propose a novel approach
to anonymize data specifically for pain detection. Our aim
is to remove confidential information related to human faces
from the dataset, while preserving critical features that enable
the research community to utilize the dataset with minimal
information loss.

In this study, we propose a novel method for extracting
AUs from 3D face landmarks. To evaluate the effectiveness
of our approach, we conducted experiments on the pain
detection task using the extracted AUs to train Transformer
[8] and LSTM [9] models. We assessed the performance of
these models by comparing their results with the benchmark
obtained from ground-truth AUs. All experiments were con-
ducted on the BP4D+ [10] dataset.

The contributions of this work are fourfold and can be
summarized as follows: (1) a method to extract AUs from
3D face landmarks; (2) the use of the extracted AUs for the
task of pain detection; (3) the demonstration that the bare
minimum number of AUs (i.e. 8 among 34 ground-truth AUs)
extracted from the 3D face landmarks can be used for pain
detection; (4) to the best of our knowledge, this is the first
work to propose the utilization of a Transformer model for
pain detection using AUs.

TABLE I
EMOTIONS AND THEIRS ASSOCIATED AUS

Emotion AUs

Happiness 6, 7, 12, 25, 26

Sadness 1, 4,6, 15, 17

Fear 1,2,4,5,7,20, 25
Anger 4,5, 17, 23, 24

Disgust 7,9, 19, 25, 26

Pain 4,6,7,9, 17, 18, 23, 24

II. RELATED WORK

Our proposed framework is mainly related to the detection
of AUs and their uses for facial expression analysis, thus we
separated this section in two parts.

A. AUs detection

Traditional methods for AUs detection rely heavily on
handcrafted features. For example, Valstar et al. [11] used a
Support Vector Machine to recognize AUs and analyze their
temporal behavior from face videos, utilizing a set of spatio-
temporal features calculated from 20 facial fiducial points.
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Fig. 1. A flowchart of the AUs detector: upon generating the 3D face
landmarks, a fully-connected neural network with multiple outputs is used
to detect the AUs.

Baltrusaitis et al. in [12] presents a real-time facial AUs in-
tensity estimation and occurrence detection framework based
on the combination of appearance features (Histogram of
Oriented Gradients) and geometry features (shape parameters
and landmark locations).

Recent advancements in deep learning have yielded im-
pressive results in detecting AUs. Li et al. [13] utilized a
Gated Graph Neural Network (GGNN) in a multi-scale CNN
framework to integrate semantic relationships among AUs.
In [14], Zhang et al. proposed a model called Multi-Head
Fused Transformer that uses both RGB and depth images
to learn discriminative AUs features representations. In their
work, Jacob et al. [15] utilized image features and attention
maps to feed different action unit branches, where discrimi-
native feature embeddings were extracted using a novel loss
function. Next, to capture the complex relationships between
the different AUs, a Transformer encoder is employed.

Unlike deep learning models that preprocess entire images,
our approach employs a straightforward fully-connected neu-
ral network to map 478 facial landmarks to 8 AUs. Our
method stands out for its efficiency in terms of computational
complexity and time.

B. AUs for facial expression analysis

FACS has been widely used for facial expression analysis
in various applications. Darzi et al. [16] used AUs to eval-
uate the intensity of symptoms of OCD and depression in
individuals undergoing deep brain stimulation. Other studies
have explored the use of AUs for detecting stress [17] and
pain. Hinduja et al. [7] trained a Random Forest model to
recognize pain by combining AUs with physiological data. In
[18], Meawad et al. proposed an approach for detecting pain
in sequences of spontaneous facial expressions, based on ex-
tracted landmarks from a mobile device. For comprehensive
surveys on automatic pain detection from facial expressions,
the readers may refer to [19], [20].

As we could see, creating effective tools for detecting AUs
can have a wide range of benefits in fields such as medicine,

psychology, and affective computing.

III. PROPOSED APPROACH

Before presenting our proposed approach, we will intro-
duce the method we used to extract the 3D face landmarks, as
well as the dataset on which we conducted our experiments.

A. Face mesh

The face mesh is a 3D model of the human face. This
type of model is commonly used in applications involving
3D modeling or augmented reality [21]. In our current work,
we will be using a pre-trained neural network (NN) to extract
the face mesh [22]. This NN has been trained to identify
the x and y coordinates of the different landmarks as well
as to estimate the z coordinate. The model is designed to
predict the positions of 468 landmarks spread out across the
facial surface, with an additional 10 landmarks allocated for
the iris. Overall, the face mesh consists of 478 points, as
illustrated in Fig. 2.

By reducing a face image to its face mesh, we can
significantly decrease the size of the information while
preserving most of the information, as we will demonstrate
later. Additionally, converting a face image into a face mesh
can help safeguard the privacy of the individuals participating
in any study in which their faces are visible. In the present
work, we only used the 3D face landmarks from the face
mesh.

B. Dataset

The BP4D+ dataset includes a collection of data for each
frame, including a 3D facial model, an RGB image, a
thermal image, and eight physiological signals. For our study,
we focused on analyzing the 2D RGB image data. From
this data, we extracted the 3D face landmarks as described
previously. The BP4D+ dataset consists of 140 participants,
including 82 females and 58 males, with ages ranging from
18 to 66 years old. The dataset was designed to elicit a
wide range of authentic emotions, with each participant
performing a set of 10 activities. However, FACS experts
annotated AUs for occurrence and intensity for four emotion
elicitation tasks (happiness, embarrassment, fear, and pain).
Nevertheless, regarding these four emotions, only the most
expressive segments were annotated (roughly 20 seconds on
average). We have defined a binary classification task for
pain by considering pain sequences as the positive class and
the remaining three emotion sequences as the negative class.

C. Overall system description

In Fig. 1 and 2, we show the flowchart of our proposed
system. Our system is composed of three main parts:

1) An anonymizer: this component refers to the transfor-
mation of images in our dataset into 3D face land-
marks. In brief, it generates a set of 478 landmark
coordinates over time. Such point coordinates are very
useful in extracting information allowing for pain de-
tection, as we will demonstrate, yet, they do not allow
identifying the identity of the subjects.
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A flowchart of the pain detector: the AUs detected from the face mesh (on the left) is processed through a Transformer encoder to identify the

TABLE II
THE INDIVIDUAL AND AVERAGE F1-SCORE OF THE DETECTED ACTION UNIT.

Method  AU5 AU6 AU8 AU9

AU10 AU12 AUl14 AUI8 AVG

FCN 82.87 86.27 89.10 77.43

87.83 80.10 7527  55.13  79.25

2) An AU detector: this component simply allows ex-
tracting the main AUs from a given set of 3D face
landmarks. Conventionally, NNs are trained to identify
face meshes from full images, making use of all
embedded information. By creating NNs that extract
the AUs from the 3D face landmarks, we demonstrate
the usefulness of the first component, and that it is
still possible to derive relevant information from a
condensed and small-size vector such as the set of 3D
landmarks.

A pain detector: this component relies on the detected
AUs to identify the pain expressed by the subjects.
While the accuracy of the AU detection is nowhere
near perfect, we show that it is still possible to identify
pain with an accuracy nearly similar to that when using
the ground-truth AUs. We also demonstrate that for
the pain detection task, very few AUs are required to
achieve an accuracy relatively close to that when using
all the AUs.

3)

D. Detailed system description

1) The AUs detector: Conventionally, AUs are extracted
from the images of human faces (as shown in Fig 2). How-
ever, the transformations we have applied that allowed us to
remove the identify-related information of the participants
led to a transformation of the input format itself. In the
current work, we use a neural network that follows the
structure of a typical fully connected neural network. In
Fig. 1, we show the structure of the proposed network. The
network is composed of one dense layer with 128 neurons.
The input layer’s shape follows the size of the input vector
generated for the face landmarks, i.e. a shape of 3 x Ng,
with N referencing to the number of landmarks (478 in our

case). The results of the detection will be shown later in
Section IV.

2) The pain detector: In this study, we propose using
advanced deep learning models to detect pain by utilizing
the AUs extracted from our AU detector approach as well
as all ground-truth AUs. We believe that tailored neural
networks will enhance performance and enable real-time
operation. Deep learning is particularly well-suited for pro-
cessing sequential data and eliminates the need for feature
engineering, which is often required in traditional machine
learning algorithms. We employed both Transformer and
LSTM and compared their performance.

LSTM is a type of recurrent neural network (RNN) that
handles sequential data by storing and retrieving information
over time. It uses a series of gates to selectively update and
forget information at each time step, allowing it to capture
long-term dependencies in the input sequence. On the other
hand, the Transformer is a type of neural network model that
has become the go-to method for handling natural language
processing tasks. Unlike LSTMs, it does not use recurrent
connections, but instead uses self-attention mechanisms to
model the relationships between different positions in the in-
put sequence. This allows it to capture dependencies between
distant positions in the sequence, which can be difficult for
LSTMs. In this work, we utilize only the encoder component
of the Transformer model, as shown in Fig. 2.

IV. RESULTS AND DISCUSSION

A. Evaluation framework

1) AUs detection: To validate our AU detection approach,
we employed a subject-independent 3-fold cross-validation
strategy. Each fold consisted of extracted 3D face landmarks
from distinct subjects, which ensured that the model was



trained on one set of subjects and evaluated on another set of
subjects to ensure generalizability. In terms of performance
metrics, we utilized the F1-score to account for imbalanced
class distribution.

2) Pain detection: Following prior works [7], we uti-
lized a subject-independent 10-fold cross-validation strategy,
where each fold comprised distinct subjects whose AUs were
extracted using the AUs detection model. For evaluation, we
used the accuracy and Fl-score.

B. Implementation details

1) AUs detection: A total of 197,782 frames have been
used for the training and testing. More precisely, we have
used approximately 66% of the frames for training and the
remaining ones for testing. The FCN model is composed of
one hidden layer with 128 neurons. As for hyperparameters,
we fixed the batch size to 64, the maximum number of
epochs to 500, and the learning rate was set to 0.01.

2) Pain detection: During the training process, we used
a fixed timestamp of 350 frames, which corresponds to
approximately 14 seconds of data. To determine the opti-
mal parameters for our models, we employed a grid-search
strategy. For the Transformer model, we set the dimension of
the linear projection layer to 1024, the number of multi-head
attention to four, the number of encoder layers to two, and
the learning rate to 10~°. Regarding the LSTM model which
is composed of two layers, we fixed the hidden dimension to
512, and the learning rate to 103, Both models were trained
with a batch size of 16 and a maximum number of epochs
of 150.

All models (for AUs and pain detection) were trained using
the Adam optimizer [23], with an exponential decay rate for
the first and second-moment estimates fixed at 0.9 and 0.999,
respectively. The whole pipeline was implemented using the
PyTorch framework [24].

C. Results

1) Action units detection: In Table II, we show the
performance of our proposed method for AUs detection. As
previously stated, since numerous AUs are absent in the
majority of the frames, most of the 34 AUs has not been
detected. However, since those infrequent AUs represent only
a very small portion of the ground-truth, it has not impacted
the overall performance of the downstream detection task, as
we demonstrate later on. Therefore, we present in Table II the
8 most present AUs, which also happens to be the most useful
in our study. The detection accuracy ranges from 55.13% for
AU18 to 89.1% for AUS, with an overall average F1-score
equal to 79.25%. The main reason behind the poor detection
accuracy of AUIS8 is its low presence in the dataset. As
opposed to the other 7 AUs identified here, AU18 is present
in only 14.76% of the frames in our dataset. That being
said, the performance is overall good for our method which
relies on a limited number of face landmarks, as opposed to
other deep learning models which process the whole images.
More importantly, as we will demonstrate, the detected AUs
from the human face landmarks can be used to perform

TABLE III
ToPp 8 DETECTED AUS

AU number  FACS name

AU 5 Upper Lid Raiser

AU 6 Cheek Raiser

AU 8 Lips toward each other
AU 9 Nose wrinkler

AU 10 Upper lip raiser

AU 12 Lip corner puller

AU 14 Dimpler

AU 18 Lip pucker

classification tasks such as pain detection. We will present the
performance of the pain detection task using three different
settings, which are:
o 8 predicted AUs (8AUP), in which the top 8 predicted
AUs (see Table III) are used for pain detection
o 8 ground-truth AUs (8AUG), in which the ground truth
of the same 8AUP are used for pain detection
o All ground-truth AUs (All-AUG), in which all the 34
ground truth AUs are used for pain detection

D. Pain detection

In Table IV, we show the performance for the task of pain
detection. We report the overall accuracy and Fl-score for
each of the three experiments. As we can see, the results
of training Transformer and LSTM models with 8AUP and
8AUG show a marginal difference. For Transformer and
LSTM models, the difference in Fl-score is 0.26% and
0.09% in favor of 8AUG, respectively. When comparing
8AUP with All-AUG, we can see a small difference of 2.43%
and 1.13% in terms of Fl-score, and 1.30% and 0.58% in
terms of accuracy in favor of All-AUG for Transformer and
LSTM, respectively.

In addition, 8AUP outperforms the Random Forest (RF)
model proposed in [7], who is the only direct comparison to
our work. Our approach results in a significant improvement
in Fl-score and accuracy, by 8.7% and 1.79% when using
Transformer, and by 8.1% and 2.14% when using LSTM,
compared to the Random Forest model. When using all-
AUG, the Fl-score and accuracy are improved by 11.13%
and 2.72% when using Transformer, and by 9.23% and
2.14% when using LSTM, compared to the Random Forest
model.

The confusion matrix as shown in Table V summarizes the
classification performance for the pain detection task using
8AUP. Overall, we can see that we have a well-balanced
confusion matrix indicating that the pain detection model is
performing well for both classes (pain vs no pain), and is
not biased towards one class or the other.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first proposed an approach for AUs detec-
tion using only 3D face landmarks. We achieved an overall
F1-score of 79.25% when using 8 among all the ground truth
AUs. Then, to further demonstrate the effectiveness of our



TABLE IV
PAIN DETECTION PERFORMANCE USING 8 AUP AS WELL AS THE
GROUND TRUTH ONES.

8AUP 8AUG All-AUG
Method F1 Acc F1 Acc F1 Acc
RF [7] - - - - 73.40  89.02
LSTM 81.50 91.16 81.59 91.03 82.63 91.74
Transformer  82.10 90.81 8236 90.89 84.53 92.11
TABLE V

SUM OF ALL THE CONFUSION MATRICES FOR THE TASK OF PAIN
DETECTION OVER THE 10-FOLDS USING THE 8 PREDICTED AUS

(8AUP).
Class Classified as
Others  Pain
Others 387 22
Pain 29 117

method, we trained a Transformer and LSTM models for the
task of pain detection using solely the 8 extracted AUs from
our AUs detection model. Those results are then compared
to the ones obtained from ground-truth AUs. The results
from the 8 predicted AUs are similar to the ones from the 8
ground truth AUs, which confirms the relevance of our AUs
detection model. Nevertheless, we observe an acceptable
drop in performance when compared to results from all
the available AUs. Moreover, the experimental results show
that our framework, even only using the 8 predicted AUs,
outperforms the state-of-the-art existing approach for the task
of pain detection on the challenging BP4D+ dataset.

In a future study, we will work toward (1) the estimation
of AUs intensity using 3D face landmarks, and; (2) on the
design of a more sophisticated model for both AUs detection
and AUs intensity estimation in a multi-task setting, to reach
higher performance and efficiency.
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