Loading [a11y]/accessibility-menu.js
Deep Learning Networks for Breast Lesion Classification in Ultrasound Images: A Comparative Study | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Monday, 27 January, the IEEE Xplore Author Profile management portal will undergo scheduled maintenance from 9:00-11:00 AM ET (1400-1600 UTC). During this time, access to the portal will be unavailable. We apologize for any inconvenience.

Deep Learning Networks for Breast Lesion Classification in Ultrasound Images: A Comparative Study


Abstract:

Accurate lesion classification as benign or malignant in breast ultrasound (BUS) images is a critical task that requires experienced radiologists and has many challenges,...Show More

Abstract:

Accurate lesion classification as benign or malignant in breast ultrasound (BUS) images is a critical task that requires experienced radiologists and has many challenges, such as poor image quality, artifacts, and high lesion variability. Thus, automatic lesion classification may aid professionals in breast cancer diagnosis. In this scope, computer-aided diagnosis systems have been proposed to assist in medical image interpretation, outperforming the intra and inter-observer variability. Recently, such systems using convolutional neural networks have demonstrated impressive results in medical image classification tasks. However, the lack of public benchmarks and a standardized evaluation method hampers the performance comparison of networks. This work is a benchmark for lesion classification in BUS images comparing six state-of-the-art networks: GoogLeNet, InceptionV3, ResNet, DenseNet, MobileNetV2, and EfficientNet. For each network, five input data variations that include segmentation information were tested to compare their impact on the final performance. The methods were trained on a multi-center BUS dataset (BUSI and UDIAT) and evaluated using the following metrics: precision, sensitivity, F1-score, accuracy, and area under the curve (AUC). Overall, the lesion with a thin border of background provides the best performance. For this input data, EfficientNet obtained the best results: an accuracy of 97.65% and an AUC of 96.30%.Clinical Relevance— This study showed the potential of deep neural networks to be used in clinical practice for breast lesion classification, also suggesting the best model choices.
Date of Conference: 24-27 July 2023
Date Added to IEEE Xplore: 11 December 2023
ISBN Information:

ISSN Information:

PubMed ID: 38083151
Conference Location: Sydney, Australia

Funding Agency:


References

References is not available for this document.