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Adaptive Learning based Upper-Limb Rehabilitation Training System
with Collaborative Robot
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Abstract— Rehabilitation training for patients with motor
disabilities usually requires specialized devices in rehabilitation
centers. Home-based multi-purpose training would significantly
increase treatment accessibility and reduce medical costs.
While it is unlikely to equip a set of rehabilitation robots
at home, we investigate the feasibility to use the general-
purpose collaborative robot for rehabilitation therapies. In this
work, we developed a new system for multi-purpose upper-
limb rehabilitation training using a generic robot arm with
human motor feedback and preference. We integrated surface
electromyography, force/torque sensors, RGB-D cameras, and
robot controllers with the Robot Operating System to enable
sensing, communication, and control of the system. Imitation
learning methods were adopted to imitate expert-provided
training trajectories which could adapt to subject capabilities to
facilitate in-home training. Our rehabilitation system is able to
perform gross motor function and fine motor skill training with
a gripper-based end-effector. We simulated system control in
Gazebo and training effects (muscle activation level) in Open-
Sim and evaluated its real performance with human subjects.
For all the subjects enrolled, our system achieved better training
outcomes compared to specialist-assisted rehabilitation under
the same conditions. Qur work demonstrates the potential of
utilizing collaborative robots for in-home motor rehabilitation
training.

Clinical relevance—The collaborative robot system is capable
of providing safe and effective training comparable to special-
ized rehabilitation robots, enabling possibilities of convenient
rehabilitation training at home.

I. INTRODUCTION

Rehabilitation training is essential for the recovery of
patients with motor disabilities. Patients need to go through
intensive and repetitive training conducted by an experienced
therapist to build up their muscle strength and neuroplasticity
in dedicated rehabilitation centers using specialized devices.
It is the primary way for them to regain motor functions
and return to normal life. For patients suffering from neu-
rological diseases and injuries such as stroke, upper-limb
motor impairments are common sequelae. Training should
begin immediately once the patient is medically stable and
rehabilitation goals can be established.It can help strength
weak muscles to prevent muscle atrophy and recover motor
functions, avoiding hand edema or shoulder joint subluxation
due to lack of movement.

Robotic systems, including both dedicated and general-
purpose robots, are widely used for rehabilitation as they are
capable of performing repetitive tasks consistently. Dedicated
robots are usually designed to train for a certain task, while
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Fig. 1: Training adapted to subject capabilities

general-purpose robots can be utilized in various scenarios,
have a greater degree of freedom compared to dedicated
systems and are more cost-effective.

Several types of dedicated robotic rehabilitation devices
and control systems for upper-limb rehabilitation had been
developed over the past decades [2], [11], [12]. These
rehabilitation robots and assistive control systems can guide
patients through the training process with or without therapist
surveillance. They can also help collect training data for the
therapist to evaluate the current conditions of the patient.

There are limited attempts on investigating the application
of general-purpose collaborative robots for rehabilitation
tasks. Collaborative robots (Cobots) can work together with
humans and often comply with safety standards, showing
the potential to be deployed in rehabilitation processes.
Kyrkjebg et al. [3] attempted to increase the safety of the
Cobot by restraining workspaces in supplement to built-in
safety mechanisms. Their results indicated the feasibility
of using the collaborative robot to assist in rehabilitation
training. Nielsen el al. integrated dynamic motion primitives
with force feedback to pre-record and learn a task for
rehabilitation, adapting to different arm lengths [4]. Another
work from [5] used a KUKA robot arm with 7-DOF. The
arm incorporated the assist-as-needed principle to motivate
patients with different levels of assistance. All of the ap-
proaches suggested an primary way to enable repetitive tasks
and that patients were fairly independent to practice daily
activities with less supervision needed.

The time- and expense-consuming process of gaining
access to rehabilitation centers and the shortage of manpower
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Fig. 2: Overview of the proposed remote system

in areas with limited resources may delay the recovery phase
of patients. A possible way to solve this problem is to use a
remote training system which provides comparable training
effects. In this work, we propose a remote adaptive upper-
limb training system with a collaborative robot. The system
integrates Cobot, camera, movement sensors, therapist, and
subject in one platform. It is able to perform different types
of training and achieve similar training effectiveness as com-
mon rehabilitation robots, demonstrating the feasibility of
deploying a general-purpose Cobot to facilitate personalized
rehabilitation training at home instead of frequent visits to
rehabilitation centers.

II. METHODS

We proposed a new remote system for assisted rehabil-
itation training and integrated with the ROS platform to
enable communications among a set of hardware (shown
in Figure [). Gripper-based end-effector was utilized for
guiding finer movement tasks that could not be performed
with previous end-effector approaches. Subjects could be too
weak to hold the gripper, so we developed this rehabilitation
task with assistance from doctors and therapists, which is
very important for rehabilitation training in early stroke
rehabilitation. The proposed system was validated through
simulations in Gazebo and OpenSim. We examined the
exercise effects by surface electromyography (SEMG) signals
with comparison to experienced trainers through experiments
to reveal its feasibility in multi-purpose rehabilitation.

The subject were guided by Cobot’s end-effector to com-
plete the training. The movement, gestures, and rehabilitation
duration were designed based on the stroke guidelines to care
for acute phase patients[1], [16] with instructions, amend-
ments, and recommendations from experienced physicians
and therapists. Two tasks were proposed in this paper. One
for gross level arm rehabilitation and another for fine level
hand rehabilitation. For arm rehabilitation, we selected the
basic ADL task, which is essential in daily life. For hand
rehabilitation, we select the Finger training task in order to
facilitate finger nimbleness. During the opening and closing
of the fist, it actuated the entire hand and forearm muscle.
Therefore, it provided better training efficiency for acute-
stage patients, helping them to build up muscle strength. A
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Fig. 3: (a) Simulation of the training system with visual and
motor feedback in Gazebo. (b) Simulation of gross level
motor training with OpenSim. (c) Simulation of fine-level
motor training with OpenSim.

piece of assisting equipment (as shown in Figure[7(e) and (f))
were worn on the subject’s forearm, whose grip-site would
be identified by computer vision methods[8] in real-time with
a Kinect camera.

A Gazebo simulation environment was built as shown in
Figure [3(a). The camera was setup to have a clear view
of the workspace, RGB-D images were transmitted to our
system for recognizing and the grip-site of the subject’s assist
equipment were identified. The resisting force due to body
limitations such as the range of motion were tracked by
the Force/Torque sensor and reported simultaneously to the
controller for analysis. We fixed a resistant force threshold
for emergency, if ' > Fy,r. (45N), the Cobot triggers
an emergency stop as further action may lead to additional
injuries. We adopted the starting points for each subject based
on visual recognition. The simulation was utilized to verify
task feasibility, the imitation learning agent also use the
environment to learn an adaptive control policy using general
expert data. Expert and imitated trajectories were simulated
in Gazebo and OpenSim simulators to ensure their safety and
evaluate the corresponding muscle activation rates in order
to optimize the task as described in Section

Safety is our main concern for rich human-interactive
tasks. On top of factory default safety configurations, the
Cobot safety was configured to three stages, determined
by the subject’s physical abilities, range of motion (ROM)
of the rehab arm, and their stages of rehabilitation. They



were different in workspace determination, acceleration, and
velocity applied during the training.

OpenSim[6] is an open-sourced model-based biomechan-
ical simulation software. It is widely used for human kine-
matics and dynamics analysis. We built two musculoskeletal
models in OpenSim to verify that the target muscles can
be activated effectively. As shown in Figure [3] for Arm
Rehabilitation, we built an upper body model based on [7].
It mainly included the skeletons and muscles of hands, arms,
and shoulders. For Hand Rehabilitation, we built an upper
limb model, which included detailed and precise skeletons
and muscles of the hand and forearm.

In the simulation, we obtained the initial trajectory of
the Cobot’s end-effector (the initial gripper trajectory) from
Gazebo simulations. Then we used this trajectory to drive
the musculoskeletal model and muscle activation were cal-
culated. According to the muscle activation results, We
discussed with clinical experts to adjust the tasks, generates
a new trajectory and the model were driven again to calcu-
late muscle activation results. After several adjustments, we
obtained the appropriate tasks and verify the effectiveness.

Imitation learning enables an agent to learn poli-
cies/trajectories from expert demonstrations. It has great
potential to be applied in rehabilitation robotics. For remote
training, therapists are not on-site to guide the Cobot on
rehabilitation tasks. Instead, they can provide trajectories
that are generally suitable for the subjects. This acts as an
expert-labeled reference. The learning agent executes it on
the subject side through imitation learning and adjusts with
respect to physical conditions and personal preference.

Unlike autonomous vehicles, there are no track boundaries
to restrict the agent in rehabilitation training. Each subject
has different boundaries determined by their biological con-
ditions. In our approach, as shown in Figure [I] subjects can
press “stop” when the trajectory is too difficult for them. It is
similar to violating track boundaries in autonomous driving.
Based on this principle, we adopted the imitation methods
inspired by HG-DAgger [17], with modifications to fit our
problem.

In our system, the provided expert trajectory was deployed
till a negative feedback had been flagged by the subject,
and the training task was then adjusted by the experts. The
stopping state would be marked as a bad state. The states
before were considered acceptable states. Then, the expert
will provide an adjusted consequent trajectory, and training
resumes with the adjusted trajectory from that state. The
procedure will be repeated until the subject accepts the entire
trajectory. The final trajectory will be trained and export a
policy personalized for the subject.

The actual trajectory executed for a new expert data test set
from the trained model were shown in Figure ] The model
was evaluated through RMSE with the distance respect to the
trajectory (x4,1/4,24) predicted and original expert trajectory
(T4,Yi,24)-

The feedback from the subject’s perspective was also
valuable as it directly reflects the feeling of interaction
with the collaborative arm during training. To receive and
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study the feedback, we designed a survey to acquire their
views after training with our rehabilitation system degree of
exercises on arm and hand, safety measures taken, and a
comprehensive rating for the overall task.

III. EXPERIMENT AND RESULTS

We recruited five healthy subjects to evaluate the safety
and feasibility of the training provided by our rehabilita-
tion system. Initial expert trajectories for both tasks were
determined by experts using simulators to emulate suitable
trajectories, and verified using OpenSim and Gazebo simu-
lators to ensure the safety execution on human subjects. All
subjects were well informed and asked to be relaxed and
remain passive during training. They were also informed to
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Fig. 5: Target muscles chosen to evaluate the training ef-
fects (Adopted from muscles illustrated in Noraxon MR3
program)
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(b) Muscle Activation in Fine-level training

Fig. 6: Muscle activation based on raw-sEMG data for each
subject when conducting rehabilitation training, shown in
percentage of Maximum voluntary isometric contraction for
each subject. (Muscle abbreviations as shown in Figure E})

provide resistance force to imitate movement disorders so as
to evaluate the self-adaptive system based on the F/T sensor
and generate personalized training plans based on imitation
learning.

To measure muscle activation quantitatively, We selected
six target muscles associated with the movement of the upper
limb for ADL task and five target muscles related to finger
training task as shown in Figure[5](a) and (b). 11 channels of
SEMG data were measured and analyzed for each subject to
validate if certain muscle activation rates had been achieved.
Then the experiment was repeated with a trained specialist
executing the same training task while holding on to the
same attach point as the Cobot. The muscle activation rates
are measured and used for comparison.

Two different cases of training were performed in the
experiment, including the arm rehabilitation task and the
hand rehabilitation task (as shown in Figure [7). Training was
conducted at a 5-minute interval, as suggested by clinicians.
A button was provided to stop the Cobot from executing
when the subject thinks it is in BAD STATE. If so, the expert
will then take control as mentioned in Section [l There was
also a 20 seconds rest between each interval of the training.

Wireless EMG sensors (Noraxon Inc.) were used and
properly placed according to the guideline to measure muscle
activation. The subject’s SEMG at rest and during training
was recorded and shown as a comparison in Figure [6]

The data were smoothed (RMS at 100ms window), time
normalized, averaged across repetitions, amplified, and ECG
artifacts removed.

We compared Cobot-guided muscle activation rates to
specialist-assisted training (with the same attach point, trajec-
tory, and instruction given to the subject). To normalize the
SEMG values for comparison, we recorded the Maximum
Voluntarily Isometric Contraction (MVIC) of each subject
with identical posture and conditions and divide them by the
measured sEMG values. MVIC is a common standardized
method to measure the muscle strength of humans [13],
[14], [15].We averaged the values between all subjects as
shown in Figure [6] The experiment result clearly shown that
training on our system induced a significantly higher MVIC
as compared to training with a specialist.

Compared with the muscle activation rate of specialists in
assisted rehabilitation, each target muscle of Cobot assisted
rehabilitation task shown a higher activation amount. Tar-
get muscles in gross-level training achieved an average of
11.6(£5.9)% increment and fine-level training achieved an
average of 14.6(£5.3)% increment.

The experiment results reflected a clear muscle activation
during the designed training exercises, and the fist holding
task is effective in activating the entire forearm muscles
during training. In both tasks, the activate degrees of the
subjects carried by the Cobot outweigh that by the therapist
significantly. The following reasons may be essential: 1.
The movement of the subject was more extended so that
the Cobot could stretch the forearm fully in each training
cycle. Thus, the performance was more stable. 2. The Cobot
applied a larger force than the therapist. The therapist could
retain force for a new subject as the physical properties
are not known. While the Cobot was equipped with the
adaptive method, it could actively adjust the strength given
and allow subjects to their full limits. 3. The end-effector
made the process more effective. The end-effector provided
better support and containment. Hence, the force was more
uniform, and a larger resultant force could be applied.

Besides the points listed above, there were other factors
that can affect the training performance of therapists in
real practice. In our setting, we gave the therapist plenty
of rest between each task, and the training period was
fixed to 10-min. However, a real therapist’s workload is
much higher. Therefore, fatigue is inevitable. Alternating or
even combining the tasks proposed will effectively help in
training the entire arm muscles. Hence our proposed system
is feasible and offered an efficient way to build muscle
strength, and prevent contracture and deformation of the arm
during the early stages of rehabilitation, where the subject
might be weak to perform standard exercises voluntarily.

In addition, we surveyed the subjects on the exercise
effects after the experiment. The result was presented in
Figure [§] with a 1-to-10 scale, larger means better. We could
conclude from the subject’s perspective, this further endorsed
the training effects on muscle activation by the designed task.
Subjects rated high on the safety, the arm and hand training
effect after the task. All of them recommend the training on
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Fig. 7: Subject receiving automated training with daily life task (Fig 8(a)(b)(c) Gross-level arm rehabilitation training) and
precise finger training (Fig 8(d)(e) Fine level hand rehabilitation training) (a) Backward Contraction (b)Forward Extension
(c) Arm Swivel Stretch (d) Pick Up with Guidance (e) Palm Open (f) Fist Hold

our designed configuration and tasks if required.
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Fig. 8: Subject’s perception of the collaborative training

IV. CONCLUSION

We proposed a novel adaptive system for assistive re-
habilitation training with Cobot integrating cameras, force
sensors, and robot controllers. We examined two representa-
tive tasks: a gross level motor training task and a fine level
motor training task. In each task, the agent learned a policy
from expert demonstrations and can be adjusted according
to the subject’s physical capabilities. Our work provided
an all-in-one platform and demonstrated the feasibility of
developing in-home personalized remote upper-limb training
system with general-purpose robot for individuals with motor
disabilities.
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