
  

  

Abstract— Atherosclerotic carotid plaque development 

results in a steady narrowing of the artery lumen, which may 

eventually trigger catastrophic plaque rupture leading to 

thromboembolism and stroke. The primary cause of ischemic 

stroke in the EU is carotid artery disease, which increases the 

demand for tools for risk stratification and patient management 

in carotid artery disease. Additionally, advancements in 

cardiovascular modeling over the past few years have made it 

possible to build exact three-dimensional models of patient-

specific primary carotid arteries. Computational models then 

incorporate the aforementioned 3D models to estimate either the 

development of atherosclerotic plaque or a number of flow-

related parameters that are linked to risk assessment. 

Computational models make it feasible to accurately describe 

the blood flow and the basic atherosclerotic process within the 

artery wall, enabling the prediction of future lumen stenoses, 

plaque areas, and risk prediction. This work presents an attempt 

to provide a carotid artery stenosis prognostic model, utilizing 

non-imaging and imaging data, as well as simulated 

hemodynamic data. The overall methodology was trained and 

tested on a dataset of 41 cases with 23 carotid arteries with stable 

stenosis and 18 carotids with increasing stenosis degree. The 

highest accuracy of 71% was achieved using a neural network 

classifier. The novel aspect of our work is the definition of the 

problem that is solved, as well as the amount of simulated data 

that are used as input for the prognostic model. 

Clinical Relevance—This establishes an important prognostic 

model for the prediction of the trajectory of carotid artery 

atherosclerosis. 

I. INTRODUCTION 

Stroke constitutes one of the most common and well-known 

causes of death in the EU with almost 450,000 casualties 

annually. However, with death being the ultimate outcome, 

stroke is also responsible for severe disabilities in adults. Over 

50% of people that have suffered a stroke, end up depending 

totally on other people for simple, everyday activities. Besides 

the effect on the human factor, stroke affects global economy 

quite heavily, since the annual costs which are connected to 
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stroke reach the enormous amount of a little less than €46 

billion, including both direct and indirect costs, which account 

for the respective loss of productivity and health care [1, 2].  

The advancement of carotid artery disease, which leads to 
larger atheromatic plaques that are susceptible to erosion or 
rupture, is one of the most important causes of stroke. When 
atheromatic plaques break, thromboembolism and cerebral 
infarction follow. It's interesting to note that more than 10% of 
all strokes are caused by thromboembolisms, which are caused 
by stenoses greater than 50% from asymptomatic plaques 
within the internal carotid artery (ICA). In cases of moderate 
to severe carotid artery disease, this increases the need for 
improved risk stratification methods that will improve patient 
care. 

In this regard, numerous studies on simulating the 
development of atheromatic plaques and modeling the 
biological processes associated with atherosclerosis have been 
published [3-7]. Only a tiny number of these research studies 
have used patient-specific 3D artery models; the great majority 
of these are based on idealized 2D carotid models. Computed 
tomography (CT), magnetic resonance angiography (MRA), 
or ultrasound (US) scans can all be used to construct patient-
specific 3D artery models. Then, using the 3D models of the 
lumen, outer wall, and plaque components, significant 
hemodynamic factors like endothelial shear stress (ESS), 
plaque structural stress (PSS), and areas of low ESS are 
calculated. These results are then used to simulate the 
infiltration of inflammatory cells and lipoproteins into the 
layers of the arterial wall, which is a process that promotes the 
progression of atheromatic plaque.  

In the literature, various data-driven models have been 
presented for the risk stratification of CAD, with various 
attempts made to find the most significant biomarkers that are 
connected with the disease. Either statistical analysis or 
machine learning models serve as the foundation for these 
models. Greco et al. [8] created a model for the prediction of 
those at high risk for carotid degree of stenosis by utilizing 
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statistically based models. A CAD prediction model was 
established in a different study suggested by de Weerd et al. 
[9] to identify people with carotid artery stenosis greater than 
50% and greater than 70% as well as to determine the most 
effective predictors of the carotid artery stenosis greater than 
50% and greater than 70%. Finally, using high-resolution 
magnetic resonance imaging (MRI) modalities, Hao-wen Li et 
al. [10] conducted an observational study to separate the high-
risk plaques (vulnerable plaques) and the low-risk (stable) 
carotid artery plaques. 

In this work, we examine the efficacy of our proposed 
prognostic model regarding the progression of carotid artery 
stenoses, using fourteen heterogeneous features extracted from 
non-imaging, imaging and finite element blood flow 
simulation hemodynamic data.   

II. MATERIALS & METHODS 

A. Dataset 

Twenty-seven patients with >50% carotid stenosis (forty-one 

carotid arteries) using a 1.5-T whole-body system (Signa 

HDx, GE Healthcare, Waukesha, WI, USA) with a bilateral 

four-channel phased-array carotid coil (Machnet BV, Eelde, 

the Netherlands) from the TAXINOMISIS cohort were used 

in the current study (Table 1). Patient provided written 

informed consent and enrolled in the TAXINOMISIS clinical 

study (www.clinicaltrials.gov; ID: NCT03495830) protocol 

which was approved by the local competent ethics committee. 

Table 1: Demographics of the utilized dataset. 

 

B. 3D reconstruction 

The ToF, T1w, T2w and PD series from the respective MRI 

screening were utilized by our in-house developed 3D 

reconstruction algorithm [11] to reconstruct in 3D the lumen 

of the 41 carotid arteries that were examined. By choosing to 

utilize only the lumen of each artery, we aimed to minimize 

the input needed for the blood flow simulations that were to 

be carried out.  

C. Blood flow modeling 

The 3D reconstructed luminal carotid geometries were then 

subjected to transient blood flow simulations, using patient -

specific boundary conditions, as extracted from the respective 

carotid UltraSound (US) screening which includes flow 

velocity profiles for at least three consecutive cardiac cycles 

for each artery. Regarding the inlet, a patient-specific mass 

flow rate for an entire stabilized cardiac cycle was used as a 

boundary condition. The same process is followed for the 

external carotid artery (ECA), where a patient-specific mass 

flow rate profile is calculated and applied as an outlet 

boundary condition. The cardiac cycle duration is calculated 

from the patient-specific measured beats per minute and 

timesteps of 0.05 seconds are used to divide the cardiac cycle.  

Regarding the internal carotid artery (ICA), a zero-pressure 

boundary condition is applied as an outlet. A no-slip and no 

penetration boundary condition is applied at the arterial wall.  
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where MAP is the Mean Arterial Pressure, SBP the Systolic 

Blood Pressure and DBP the Diastolic Blood Pressure, 

respectively. The process described below was followed to 

calculate the pressure drop ratios between the CCA and the 

ICA or ECA outlets: using a zero-pressure boundary condition 

for the ICA outlet, we calculate the pressure gradient 

throughout the entire vessel. Having the patient-specific MAP 

value for the CCA which is calculated using Eq.1, we calculate 

the pressure difference for the simulated case between the 

CCA and the ECA and we subtract it from the patient-specific 

value, thus calculating the actual pressure for the ICA outlet. 

The same procedure is then applied between the CCA and the 

ECA and the final ECA outlet pressure value is calculated, 

thus allowing for the calculation of the two pressure drop 

ratios, respectively (i.e., PECA/PCCA and PICA/PCCA). To model 

blood flow in our simulations, we used the Navier-Stokes and 

the continuity equations: 
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where v is the blood velocity vector and τ is the stress tensor, 

which is defined as: 

2 ,ij ijp = − +τ                             (4) 

where δij is the Kronecker delta, μ is the blood dynamic 

viscosity, p is the blood pressure and εij is the strain tensor 

calculated as: 
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Blood was treated as Newtonian with density 1050 kg/m3 and 

dynamic viscosity 0.0035 Pa·s, respectively. All simulations 

were carried out using ANSYS® v16.2. The element size was 

set to 0.16 mm or lower and constituted only of tetrahedra. 

The mesh size was determined after a thorough mesh 

sensitivity analysis. The convergence criterion was set to 10-4 

and the iteration limit was 150 for each timestep.  

 

Patients (n=27) N (%) 

Age (years) 69.6±7.4 

Gender (male) 21 (77.8) 

Risk factors  

Smoking 20 (74) 

Alcohol abuse 0 

Diabetes mellitus 17 (62.9) 

Hypertension 25 (92.6) 

Hypercholesterolemia 27 (100) 

Coronary disease 12 (44.4) 

Obesity 3 (11.1) 

BMI 25.1±6.9 

Stenosis degree (%)  

50-70 29 

70-90 10 

90-100 2 

 



  

D. Feature extraction 

Fourteen (i.e., 14) features were extracted for the forty-one 

instances of our dataset. Time-averaged ESS values, total area 

of low ESS (i.e., <2 Pa), peak TAESS values, time averaged 

oscillatory shear index (OSI) values, areas of high OSI values, 

normalized areas of low TAESS, normalized areas of high 

OSI values, and PECA/PCCA and PICA/PCCA ratios were 

calculated for each arterial pair. OSI is calculated as: 
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where T is the cardiac cycle period used to calculate the time-

averaged endothelial shear stress, and ESS is the endothelial 

shear stress. Furthermore, Time averaged Endothelial Shear 

Stress can be calculated through the following equation: 

0

1 T
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T

=        (7) 

where T is the cardiac cycle period. The areas of low ESS 

values (i.e., TAESS<2 Pa) are prone to develop atheromatic 

plaque, or further progress the already existing one [12], 

whereas areas of high OSI values (i.e., OSI>0.35) are thought 

to be more likely to exhibit endothelial dysfunction and 

plaque development [13]. Table 2 depicts the utilized features 

and Fig.1 depicts the feature extraction workflow. 

Feature type Feature 

Imaging 

Artery, Peak Systolic 

Velocity (PSV), ICA 

stenosis %, ECA stenosis 

%, Mean arterial pressure 

Simulation-based 

Peak TAESS, PECA/PCCA, 

PICA/PCCA, Vessel average 

TAESS, Vessel average 

OSI, Area of low TAESS, 

Area of high OSI, 

Normalized area of low 

TAESS, Normalized area 

of high OSI 

 
Fig. 1: Feature extraction workflow. 

E.  Problem definition 

The carotid artery progression problem has been here 

formulated as a multivariate two class classification problem 

based on the stenosis geometrical findings deriving from the 

US screening of each patient. Elaborating on this, we 

analyzed the dataset, classifying arteries that exhibited no or 

minimal stenosis degree change as Class 0, and arteries that 

exhibited stenosis degree change higher than 10% as Class 1. 

We specifically chose 10% stenosis degree increase as a cut-

off because percentages of 5% are not statistically significant 

and may be attributed to imaging artifacts or even 

miscalculation due to the very small difference in luminal 

diameter. Fig.2 depicts the illustration of the problem 

definition. 

 

Fig. 2: Problem definition of the proposed machine learning based 

model.  

F. Classification scheme implementation 

Regarding the classification process, our input data are 

directly fed to five different classification algorithms. For the 

purposes of this work, we examine the efficacy of five well-

known classification algorithms to distinguish the cases 

where the luminal diameter is prone to narrow by more than 

10%. The classification algorithms that were used were Naïve 

Bayes, Random Forest, Support Vector Machine (SVM), 

Neural Network and Logistic Regression.  

G. Model evaluation 

A five-fold cross validation process was followed to 

evaluate our prognostic model, which divides the initial input 

dataset into four subsets, where the four subsets are used to 

train and the remaining one is used to test the algorithm, and 

after a full cross validation circle, the results of the five test 

sets are averaged to calculate the performance of the 

algorithm. 

III. RESULTS 

The classification results for all five classification 

algorithms are depicted in Table 3. Briefly, the best accuracy, 

area under the curve (AUC) and recall values were observed 

for the Neural Network classification scheme presenting with 

0.707 accuracy and 0.725 AUC, respectively. The simple 

logistic regression scheme also presented with close values to 

the NN classifier with 0.698 AUC and 0.683 accuracy, 

respectively. Furthermore, increased stenosis degree by more 

than 10% (i.e., Class 1) is correlated with higher Gini decrease 

values with vessel average OSI, area of high OSI/total vessel 

area %, mean arterial pressure, area of low TAESS/total 

vessel area % and peak systolic velocity (PSV).     

Table 2: Description of the feature dataset utilized as input. 



  

Table 3: Results obtained implementing different classification 

schemes. 

 

Fig. 3 depicts the confusion matrix for the NN classifier 
showing the proportion of predicted cases. The values in 
purple indicate the correctly predicted cases. 

 

Fig. 3: Confusion matrix for the Neural Network classifier (showing 

proportion of predicted). 

IV. DISCUSSION 

In this proof-of-concept study, we presented a new 

prognostic model capable of predicting the progression of a 

carotid artery stenosis. Both imaging and non-imaging data 

were used as input for the model. Imaging data were utilized 

both for patient-specific flow profiles extraction for each 

artery, as well as, for the 3D reconstruction of the arterial 

lumen of the carotids that were used. Apart from the 

aforementioned data, several hemodynamic parameters that 

were calculated from respective patient-specific finite 

element-based blood flow simulations were also used as input 

for the prognostic model. The input features that were utilized 

were fourteen and the outcome of the model was either a 

stable luminal diameter, or an increase of the existing stenosis 

by at least 10%.  Several classifier schemes were tested and 

the most efficient in terms of accuracy (i.e., 0.707) and area 

under the curve (i.e., AUC=0.725) was the neural network 

approach. Moreover, the most relevant features that affected 

the outcome the most were the metrics associated with areas 

of low TAESS and the OSI.  

The main limitation of our study is the relatively small 

number of examined cases, however, even with such a low 

number of examined arteries, the prognostic capabilities of 

the proposed model were quite promising. The expansion of 

the dataset which is an ongoing process will enhance the 

capabilities of the model. We must also state that no data 

curation was needed for the utilized data since the quality of 

the data used was high and there were no missing values. 

Furthermore, the hemodynamic features that are used as input 

are highly dependent to the 3D reconstruction quality of the 

lumen, which in turn is also highly dependent from the quality 

of the MR images that are used.    

V. CONCLUSION 

In this work we proposed a prognostic model regarding the 

evolution of existing stenoses in the carotid vasculature, 

which is based on imaging, non-imaging and simulated 

hemodynamic features. Our methodology benefits from using 

machine learning models and provides a significant clinical 

impact regarding the choice of the type of medical treatment 

in carotid artery disease.  
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Classifier AUC Accuracy Precision Recall

Neural Network 0.725 0.707 0.707 0.707

Logistic Regression 0.698 0.683 0.681 0.683

Naive Bayes 0.679 0.659 0.673 0.659

SVM 0.406 0.61 0.604 0.61

Random Forest 0.597 0.488 0.478 0.488


