Abstract:
Electromyogram (EMG) signals provide valuable insights into the muscles’ activities supporting the different hand movements, but their analysis can be challenging due to ...Show MoreMetadata
Abstract:
Electromyogram (EMG) signals provide valuable insights into the muscles’ activities supporting the different hand movements, but their analysis can be challenging due to their stochastic nature, noise, and non-stationary variations in the signal. We are pioneering the use of a unique combination of wavelet scattering transform (WST) and attention mechanisms adopted from recent sequence modelling developments of deep neural networks for the classification of EMG patterns. Our approach utilizes WST, which decomposes the signal into different frequency components, and then applies a non-linear operation to the wavelet coefficients to create a more robust representation of the extracted features. This is coupled with different variations of attention mechanisms, typically employed to focus on the most important parts of the input data by considering weighted combinations of all input vectors. By applying this technique to EMG signals, we hypothesized that improvement in the classification accuracy could be achieved by focusing on the correlation between the different muscles’ activation states associated with the different hand movements. To validate the proposed hypothesis, the study was conducted using three commonly used EMG datasets collected from various environments based on laboratory and wearable devices. This approach shows significant improvement in myoelectric pattern recognition (PR) compared to other methods, with average accuracies of up to 98%.
Published in: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Date of Conference: 24-27 July 2023
Date Added to IEEE Xplore: 11 December 2023
ISBN Information:
ISSN Information:
PubMed ID: 38083700