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Abstract— Needle positioning is essential for various medical
applications such as epidural anaesthesia. Physicians rely on
their instincts while navigating the needle in epidural spaces.
Thereby, identifying the tissue structures may be helpful to
the physician as they can provide additional feedback in the
needle insertion process. To this end, we propose a deep neural
network that classifies the tissues from the phase and intensity
data of complex OCT signals acquired at the needle tip. We
investigate the performance of the deep neural network in a
limited labelled dataset scenario and propose a novel contrastive
pretraining strategy that learns invariant representation for
phase and intensity data. We show that with 10% of the training
set, our proposed pretraining strategy helps the model achieve
an F1 score of 0.84±0.10 whereas the model achieves an F1 score
of 0.60±0.07 without it. Further, we analyse the importance of
phase and intensity individually towards tissue classification.

Index Terms— self-supervised learning, contrastive learning,
optical coherence tomography, needle navigation

I. INTRODUCTION

Precise positioning of needles is essential for various med-
ical applications. For example, during epidural anesthesia
the physician needs to navigate a needle to the epidural
space, which has a width of a few millimeter. Hence,
identification of the tissue structures passed during insertion
is important to estimate the position of the needle. Image-
guided approaches, e.g., using ultrasound (US) [1], as well
as electromagnetic or optical needle pose tracking have
been investigated to assist needle placement. To address
inaccuracies of these external needle navigation methods [2],
approaches to estimate tissue properties from the needle
tip have been studied, e.g. by sensing the forces acting at
the needle tip [3], [4] or integrating miniaturized imaging
probes [5]. Recently, the application of optical coherence
tomography (OCT), an imaging modality with high spatial
and temporal resolution, has been proposed. It enables depth-
resolved scanning of tissue structures by measuring the
reflections of infrared light. The acquired complex OCT
signal can be split into intensity and phase data, with the
latter resolving tissue motion in sub-pixel range. However,
imaging depth of OCT is limited to a few millimeters and
interpretation of image data requires time consuming analysis
by experienced clinician who may not be available every
time.
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Hence, supervised deep learning methods have been pro-
posed that use OCT intensity data for tissue classification [5],
[6] and boundary tracking [7] during needle insertion. In
addition, deep learning based rupture detection [8] has been
proposed, combining intensity and phase data. Still, manual
labeling of acquired OCT datasets is time consuming and
requires additional information on the needle pose and sur-
rounding tissue structures. These ground-truth information
are accessible for phantom studies with optimized needle
tracking conditions. But gaining ground-truth information
during in-vivo needle insertions is complicated and ham-
pered by decreased imaging resolutions. This motivates the
investigation of self-supervised learning strategies for tissue
classification during needle insertion so as to reduce the
labelling effort.

Self-supervised learning has been proposed to alleviate
the problem of time-consuming labelling by learning visual
features from unlabelled dataset [9], [10], [11], [12]. A
popular self-supervised learning method SimCLR [13] learns
invariant representation of an image and its augmented
version. Using the InfoNCE loss [14], the network learns
invariant representations for the image and its augmented
version. In our case, we have intensity and phase data from
the complex OCT signal. Augmentations such as rotation and
random crop may not be ideal for our data as the augmented
views will represent signals that are unrealistic to generate
by needle insertions. As such, meaningful representations
will not be learned in the pretraining step. Instead, to learn
better representations, we align phase and intensity features
within a time window. Empirically, we demonstrate that
this pretraining strategy is helpful for tissue classification
especially in limited labelled dataset scenario.

In conclusion, our contributions are three fold. First, we
propose a deep learning algorithm which classifies tissue
class by jointly using phase and intensity data. Second, to
circumvent the issues arising from limited labelled dataset,
we propose a novel self-supervised contrastive pretraining
strategy that increases the classification performance in an
extremely low labelled dataset scenario. Third, analogous to
the rupture detection study [8], we investigate the importance
of the phase and intensity data on the classification perfor-
mance by evaluating only using phase or intensity data.

II. MATERIALS AND METHODS

A. Data acquisition and preparation

We design an experimental setup to perform reproducible
needle insertions in soft tissue phantoms (Fig. 1). We embed

ar
X

iv
:2

30
4.

13
57

4v
1 

 [
ee

ss
.I

V
] 

 2
6 

A
pr

 2
02

3



Fig. 1. a) Experimental setup for data acquisition. We use a microcontroller
(E) with attached stepper motor (A) to position soft tissue phantoms (B)
relative to a fixed US probe (C). We insert our OCT needle (D) with a
second stepper motor (F). A logic analyzer (G) records the trigger signals
of all components. Visualisation of OCT b) intensity and c) phase M-scan
with highlighted uncertainty windows (red).

a cleaved optical fiber in an epidural Touhy needle to acquire
one-dimensional scans (A-scans) at the needle tip with our
OCT system (Telesto I, Thorlabs). To track the needle motion
relative to soft tissue structures we additionally apply US
imaging with a linear probe (Cicada, Cephasonics). We use
two stepper motors to control the needle and phantom motion
and conduct multiple needle insertions per phantom. We
insert the needle with a velocity of 1mms−1 and simultane-
ously acquire OCT A-scans and US images with frequencies
of 91 kHz and 60Hz, respectively. For data synchronization
we record the trigger signals of the motor driver, OCT
and US system. Our soft tissue phantoms are composed
of beef, pork, or turkey meat embedded in gelatin of 5%
density to imitate tissue structures punctured during epidural
punctures similar to [3]. We perform three data preprocessing
steps. First, we display the A-scans sequentially recorded
during insertion side by side over time to obtain M-scans,
considering either OCT intensity or phase data (Fig. 1 (b)
and (c)). Second, we average the M-scans over time with
a window size of 1000 A-scans and apply spatial cropping.
Third, we extract the needle position relative to the tissue
structures from the US images to label the OCT M-scans. To
consider inaccuracies for transitions between tissue classes

we define an uncertainty window to be excluded from the
labelled dataset.

B. Overall Framework

Fig. 2 illustrates our proposed method. Our proposed
method is a deep neural network with two branches (fθ,
gθ), that processes the intensity and phase data respectively.
We split the method in two parts: (i) Intensity and phase
alignment using contrastive pretraining, (ii) Classification
task using cθ as the classification head.

Fig. 2. (a) Our contrastive pretraining strategy (b) Finetuning for tissue
classification task.

(i) Intensity and phase alignment using contrastive
pretraining: Our positive pair consists of intensity and phase
data in the same time window tn. Formally, let xphst ∈
RH×W×3 and xintt ∈ RH×W×3 be phase and intensity
crops at time window t respectively. It is to be noted that
the phase and intensity crops are originally single channel
images. The information is copied to the 2 channels to make
it a 3 channel input for fθ and gθ. We pass xintt through
fθ and xphst through gθ. This results in phase and intensity
feature vectors z in hyperspace RD, with zintt = fθ(x

int
t )

and zphst = fθ(x
phs
t ) respectively. sim computes the cosine

similarity between two vectors. We train the models using
the following contrastive loss:

Lc(i) = −log
esim(zinti ,zphsi )/τ

esim(zinti ,zphsi )/τ + S1 + S2

with

S1 =
∑
j 6=i

esim(zinti ,zphsj )/τ , S2 =
∑
j 6=i

esim(zinti ,zintj )/τ .
(1)

(ii) Classification Task: For our experiments, we consider
four tissue classes: gelatin, pork, beef, turkey. Our mini-
batch consists of randomly sampled intensity and phase data
crops belonging to a time window tn from multiple phantom
insertions. We train cθ, fθ and gθ using cross-entropy loss.

III. EXPERIMENTS

We test the feasibility of our proposed method using our
in-house dataset. We compare our method against models



trained using randomly initialised weights (”Scratch”) and
using ImageNet [15] weights in different training set sizes.
We compare all the methods with 10%, 20%, 30%, 60%,
80% and 100% of the training set. Further, we compare the
importance of phase and intensity features towards tissue
classification by solely using fθ or gθ.

Dataset split: We have 34, 14 and 18 needle insertions on
soft-tissue phantom with beef, pork and turkey respectively.
We split the needle insertions into 80:10:10 train, validation
and test split stratified on tissue class. From each M-scan,
we crop intensity and phase data by passing a rectangular
window of width 256 and height 250 along the time dimen-
sion of the M-scans. Examples of the extracted phase and
intensity data are shown in Fig 1 (c) and (d). Note that the
rectangular window does not overlap in area with its last
position as it slides across the time dimension. In total, 269,
169, 64 and 115 phase and intensity crops of gelatin, beef,
pork and turkey are extracted. For our contrastive pretraining,
we use 100% of the training set without labels.

Implementation Detail: fθ and gθ are two identical
ResNet18 [16] models. cθ is a multilayer perceptron with
3 layers having dimension 1024, 512 and 4 with a ReLu
in between when using both fθ and gθ and 512, 512 and
4 when using fθ or gθ. We train our network using Adam
optimizer [17]. We use a batch size of 28. D is set to 512 in
RD and τ = 0.1. We train all our models for 100 epochs.
Our reported metrics are weighted Average Precision (AP)
and F1. All our experiments are trained using 3-fold cross
validation and we report the mean and standard deviation of
the metrics.

IV. RESULTS

The results of our experiments are reported in Tab. I. We
report classification performance in 10%, 20% and 30% of
the training set. First, AP and F1 scores are best for models
trained using our pretraining strategy in all the limited dataset
scenarios.

TABLE I
RESULTS IN LIMITED LABELLED DATASET SCENARIO

% Training Set Method AP F1
10 Scratch 0.73±0.07 0.60±0.07

ImageNet 0.85±0.10 0.76±0.1
Pretrained 0.94±0.05 0.84±0.10

20 Scratch 0.88±0.04 0.69±0.05
ImageNet 0.95±0.03 0.84±0.04
Pretrained 0.97±0.01 0.89±0.03

30 Scratch 0.93±0.05 0.84±0.05
ImageNet 0.97±0.02 0.92±0.03
Pretrained 0.99±0.006 0.95±0.02

Fig. 3 (Top) shows that with infusion of data into the
training stage, the three methods converge in performance.
Fig. 3 (Bottom) shows the relative importance of phase and
intensity data towards classification. Combination of phase
and intensity shows consistently highest tissue classification
performance throughout. We also observe that phase data are
more beneficial towards intensity.

Fig. 3. (Top) Comparing Average Precision vs % of training set for models
trained from scratch, with ImageNet weights and using our pretraining
strategy (Bottom) Average Precision vs % of training set for models trained
using only phase crop, only intensity crop and using both phase and intensity
crop

V. DISCUSSION AND CONCLUSION

From the results in Tab. I we observe that pretraining
using our proposed strategy is the most beneficial for tissue
classification in limited dataset scenario. We conjecture that
the improvement in performance is because the model learns
invariant representations for phase and intensity data and
in doing so, the weights of the network are tuned to our
target OCT dataset. The lowest performances are observed
for the models trained from scratch. This can be attributed to
overfitting of the models to the small labelled dataset. With
respect to the models trained using ImageNet weights, we hy-
pothesize that due to the large differences between ImageNet
dataset and our OCT dataset, the ImageNet weights do not
transfer well to our OCT dataset. Considering Fig. 3 (right),
the differences in performance when training with intensity
or phase data might be related to the fact that the speckle
patterns in the intensity data are not necessarily clearly
distinguishable when the tissue structures are compressed in



front of the needle. In contrast the phase data, capable for
sub-pixel motion detection, might contain tissue dependent
features during compression. Finally, from Fig. 3 we also
conclude that with infusion of data, all the methods achieve
competitive performance.

In conclusion, we propose a deep learning model to
classify tissue from complex OCT data. We show that com-
bination of intensity and phase data is most beneficial and
leads to the highest average precision. Further, we propose
a novel self-supervised contrastive pretraining strategy that
proves to be beneficial in low labelled dataset scenarios.
We believe that this pretraining stategy may prove to be
helpful in improving the classification performance for in-
vivo needle insertion.
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[11] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and
Alexei A. Efros, “Context encoders: Feature learning by inpainting,”
CoRR, vol. abs/1604.07379, 2016.

[12] Pranjal Kumar, Piyush Rawat, and Siddhartha Chauhan, “Contrastive
self-supervised learning: review, progress, challenges and future re-
search directions,” International Journal of Multimedia Information
Retrieval, Aug 2022.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey
Hinton, “A simple framework for contrastive learning of visual
representations,” 2020.
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