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Abstract— Myocardial infarction (MI) is one of the most
prevalent cardiovascular diseases with associated clinical
decision-making typically based on single-valued imaging
biomarkers. However, such metrics only approximate the
complex 3D structure and physiology of the heart and hence
hinder a better understanding and prediction of MI outcomes.
In this work, we investigate the utility of complete 3D cardiac
shapes in the form of point clouds for an improved detection of
MI events. To this end, we propose a fully automatic multi-step
pipeline consisting of a 3D cardiac surface reconstruction step
followed by a point cloud classification network. Our method
utilizes recent advances in geometric deep learning on point
clouds to enable direct and efficient multi-scale learning on
high-resolution surface models of the cardiac anatomy. We
evaluate our approach on 1068 UK Biobank subjects for the
tasks of prevalent MI detection and incident MI prediction
and find improvements of ∼13% and ∼5% respectively over
clinical benchmarks. Furthermore, we analyze the role of each
ventricle and cardiac phase for 3D shape-based MI detection
and conduct a visual analysis of the morphological and
physiological patterns typically associated with MI outcomes.

Clinical relevance— The presented approach enables the
fast and fully automatic pathology-specific analysis of full
3D cardiac shapes. It can thus be employed as a real-time
diagnostic tool in clinical practice to discover and visualize more
intricate biomarkers than currently used single-valued metrics
and improve predictive accuracy of myocardial infarction.

Index Terms— Myocardial Infarction, Point Cloud Networks,
Cine MRI, 3D Cardiac Shape Analysis, Ejection Fraction,
Geometric Deep Learning.

I. INTRODUCTION

Myocardial infarction (MI) is a common manifestation
of coronary artery disease, the deadliest pathology in the
world [1]. In current clinical practice, its diagnosis and treat-
ment typically involve the acquisition of cardiac cine mag-
netic resonance (MR) images as the gold standard imaging
modality for cardiac anatomy and function assessments [2].
However, current clinical decision-making is often guided by
single-valued biomarkers, such as ejection fraction, which
are directly calculated from 2D MR imaging (MRI) slices
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to evaluate cardiac anatomy and physiology on a purely
global level [2]. Consequently, considerable research efforts
have focused on developing methods that can take more
comprehensive image information into account [3], [4], [5],
[6], [7]. However, all these approaches still only approximate
the true 3D structure of the heart based on 2D images or
image-derived features and therefore neglect more complex
and localized changes in 3D cardiac shapes, which play a
crucial role in improving the understanding, prediction, and
management of MI outcomes [8], [9], [10], [11], [12].

In this work, we investigate the utility of full 3D cardiac
shape representations in the form of point clouds for the de-
tection and prediction of MI events. To this end, we propose
a novel fully-automatic MI detection pipeline, which first
reconstructs 3D cardiac anatomy point clouds from raw cine
MR images and then employs targeted point cloud networks
for the MI classification task. The network architectures of its
individual components are based on recent advances in point
cloud-based deep learning to enable efficient multi-scale
feature learning directly on anatomical surface data. Deep
learning approaches for point cloud data have recently been
increasingly used in the field of cardiac image analysis for
a variety of applications, such as 3D surface reconstruction
[13], [14], [15], [16], [17], image segmentation [14], [18],
pathology classification [18], or 3D anatomy and function
modeling [19], [20], [21], [22], [23]. In this work, we
specifically study 3D anatomical representations of the left
and right ventricles at both ends of the cardiac cycle and their
effect on prior and future MI. To the best of our knowledge,
this is the first MRI-based point cloud deep learning approach
to focus on MI prediction directly from 3D cardiac shapes.

II. METHODS

A. Dataset

Our dataset consists of 1068 subjects of the UK Biobank
study for which cine MR images were acquired using a
balanced steady-state free precession (b-SSFP) protocol [24].
An MI event after the imaging date (incident MI) was
recorded for 235 subjects, while 294 subjects suffered an
MI event prior to imaging (prevalent MI). The remaining 539
subjects were selected to be free of any diseases associated
with the cardiovascular system and are used as normal con-
trol cases for our analysis. We follow the disease definition
as proposed in previous work [25] and use the UK Biobank
field ID 42,000 to identify both incident and prevalent MI
subjects.
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Fig. 1. Overview of our proposed 3D anatomy-based infarction detection pipeline. We first reconstruct 3D point cloud representations of the cardiac
anatomy from corresponding cine MRI acquisitions at the ED and ES phases of the cardiac cycle using a fully automatic multi-step pipeline (A) [15]. We
then directly input the obtained 3D anatomies into separate specialized point cloud classification networks for the tasks of prevalent MI detection (B) and
incident MI prediction (C).

B. Infarction Detection Pipeline

Our proposed 3D anatomy-based MI detection pipeline
consists of multiple fully automatic steps as illustrated in
Fig. 1. It receives the cine MRI acquisitions at both the end-
diastolic (ED) and end-systolic (ES) phases of the cardiac
cycle as inputs. Based on these inputs, we reconstruct the cor-
responding 3D biventricular anatomy models at both phases
using a multi-step cardiac surface reconstruction approach
[15] (Fig. 1-A). It first segments the left ventricular (LV)
endocardium, LV epicardium, and right ventricular (RV)
endocardium in the short-axis and four-chamber long-axis
(LAX) slices of the MRI acquisition with separate pre-
trained fully convolutional neural networks [26] and in the
two-chamber LAX images using a U-Net with adversarial
training. The resulting segmentation contours of all image
slices are then placed into 3D space as sparse point clouds
[27] before a point cloud completion network is employed
to correct the motion-induced slice misalignment and output
dense point cloud representations of the 3D cardiac anatomy.

These 3D cardiac anatomies are then used as inputs to
point cloud classification networks for the tasks of prevalent
MI classification (Fig. 1-B) and incident MI prediction
(Fig. 1-C). For each task, we study both ES only and
combined ED and ES anatomy inputs as implicit and ex-
plicit representations of 3D shape-based cardiac function.
In the latter case, we concatenate the ED and ES point
clouds before feeding them into the point cloud classification
network, giving it direct access to all available anatomical
information at both phases. In addition, we investigate the
utility of the RV as part of a biventricular representation of
3D cardiac shape for MI, by using first only LV anatomies,
and then combined LV and RV anatomies as network inputs.
We analyze the effect of these two different shape inputs for
both MI classification tasks and for each of the two temporal
input types, resulting in a total of 8 different experiments.

C. Point Cloud Classification Network

We choose PointNet [28] as the architectural basis of our
point cloud classification network and adjust it for the task
of binary MI classification of 3D point cloud representations
of cardiac anatomy and function. To this end, we first use a
sigmoid activation layer at the end of PointNet’s classifica-
tion branch to obtain binary prediction probabilities as the
network’s output. We then tune the drop-out probabilities in
the last multi-layer perceptron part of the network based on a
grid search procedure. We train our network using the binary
cross entropy loss and the Adam optimizer with a mini-batch
size of 20 and a learning rate of 1E-6 for 200 epochs on an
RTX 2060S GPU with 8 GB memory.

III. EXPERIMENTS AND RESULTS

A. Prevalent Infarction Detection

In our first experiment, we assess whether the high-
resolution 3D point cloud representations of the cardiac
anatomy contain more information about prevalent MI events
than corresponding global clinical benchmarks and whether
a point cloud-based deep learning network is able to suc-
cessfully extract them without any manual intervention.
Furthermore, we analyze the importance of different cardiac
substructures and cardiac phases for this task. To this end, we
train four separate point cloud classification networks using
the ES LV anatomy, the combined ED and ES LV anatomies,
the ES biventricular anatomy, and the combined ED and ES
biventricular anatomies as inputs to the respective networks.
We then select widely used clinical metrics (ES volume,
ejection fraction) for the LV and RV as our comparative
benchmarks and input them as independent variables in four
separate logistic regression models, each trained on the same
dataset and task as the corresponding point cloud networks.
We conduct a four-fold cross validation experiment in each



case and report the results in terms of area under the receiver
operating characteristic (AUROC) scores in Table I.

TABLE I
RESULTS OF THE PROPOSED AND BENCHMARK METHODS FOR

PREVALENT MI DETECTION

Anatomy Input Method AUROC

LV

ES Volume Regression 0.654

ES 3D Shape Proposed 0.705

Ejection Fraction Regression 0.670

ED+ES 3D Shape Proposed 0.725

LV+RV

ES Volume Regression 0.641

ES 3D Shape Proposed 0.699

Ejection Fraction Regression 0.671

ED+ES 3D Shape Proposed 0.758

We find that 3D shape-based point cloud classification
networks outperform the respective clinical benchmarks for
all cardiac phases and anatomical substructures with an
average relative difference of ∼10% in terms of AUROC.
As expected, the combined biventricular input at ED and ES
achieves the highest score and a ∼13% outperformance of
its respective clinical benchmark.

Following this quantitative evaluation, we further inves-
tigate which 3D anatomical shape features are typically
associated with prevalent MI cases by the network. To this
end, we select two representative cases corresponding to
good and poor network predictions on the test dataset for
both MI and normal cases and visualize them in Fig. 2.
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Fig. 2. Sample anatomies that resulted in good and bad predictions (rows)
for prevalent MI and normal cases (columns).

We observe that good network predictions for prevalent
MI subjects are more likely to occur in cases of reduced
myocardial thickening and smaller overall volume changes

between the ED and ES phases, and vice versa for normal
cases. Bad predictions more commonly happen when these
associations are weakened or reversed.

B. Incident Infarction Prediction

In addition to detecting prevalent MI events, we investigate
whether 3D anatomy-based patterns learned by point cloud
networks are also beneficial for the prediction of incident
MI events. We follow a similar experimental setup as for
prevalent MI classification in Sec. III-A and train four
separate networks and their corresponding clinical regression
benchmarks for the binary prediction of incident MI events
using four-fold cross validation and the AUROC evaluation
metric (Table II). We again use the full 3D shapes (LV ES,
LV ED+ES, LV+RV ES, LV+RV ED+ES) as neural network
inputs and the respective clinical metrics (LV ES volume,
LV ejection fraction, LV+RV ES volume, LV+RV ejection
fraction) as independent regression variables.

TABLE II
RESULTS OF THE PROPOSED AND BENCHMARK METHODS FOR INCIDENT

MI PREDICTION

Anatomy Input Method AUROC

LV

ES Volume Regression 0.632

ES 3D Shape Proposed 0.660

Ejection Fraction Regression 0.635

ED+ES 3D Shape Proposed 0.654

LV+RV

ES Volume Regression 0.620

ES 3D Shape Proposed 0.651

Ejection Fraction Regression 0.618

ED+ES 3D Shape Proposed 0.646

We find that the 3D shape-based point cloud network is
able to outperform the respective clinical benchmark for both
cardiac phases and ventricles by ∼4% on average. The best
score is achieved by the combined ventricular anatomy at
ES with a ∼5% improvement. When visually examining the
results, we observe similar patterns as in our prevalent MI
detection experiments (Sec. III-A) with a generally higher
probability of accurate MI prediction for smaller changes in
myocardial thickness between ED and ES phases.

IV. DISCUSSION AND CONCLUSION

We have presented a novel end-to-end point cloud-based
deep learning pipeline for the detection of both prior and
future MI events based on 3D cardiac shapes. In our experi-
ments, the method has been able to outperform correspond-
ing clinical benchmarks for both classification tasks using a
variety of different inputs. On the one hand, this indicates
that full 3D cardiac shapes contain more infarction-related
information than current single-valued clinical biomarkers,
which is in line with previous works [8], [9] and promises
to improve both patient risk stratification and the implemen-
tation of preventive measures. On the other hand, it shows
that the architectural design of our pipeline is adequately



chosen to successfully extract relevant biomarkers directly
from the 3D anatomical shapes. Hereby, the selected point
cloud representation of cardiac surface data considerably
reduces the memory requirements compared to previous
voxelgrid-based approaches. Combined with the fully au-
tomatic pipeline design, this allows for faster execution
speeds, wider applicability, and easy scaling to both higher
resolutions and large numbers of patients in real time.

In our experiments, we also find better predictive per-
formance for prevalent compared to incident MI cases. We
hypothesize that this is primarily caused by the more easily
visible morphological changes of post-MI cardiac remodel-
ing, which the network is able to capture. While the addition
of RV information achieved mixed results, the inclusion of
anatomies at both ED and ES phases generally improved
predictive accuracy, which corroborates previous findings on
the importance of 3D LV contraction information for MI
detection [8], [9]. While we focused on the role of 3D shapes
in this study, we believe that the pipeline can be easily
extended to include other patient-specific information with a
potential to further improve the understanding of MI events.
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