
  

  

Abstract— We analyze the efficiency of motor unit (MU) filter 

prelearning from high-density surface electromyographic 

(HDEMG) recordings of voluntary muscle contractions in the 

identification of the motor unit firing patterns during elicited 

muscle contractions. Motor unit filters are assessed from 10 s 

long low level isometric voluntary contractions by gradient-

based optimization of three different cost functions and then 

applied to synthetic HDEMG recordings of elicited muscle 

contractions with dispersion of motor unit firings ranging from 

13 ms to 1 ms. We demonstrate that the number of identified 

MUs and the precision of MU identification depend significantly 

on the selected cost function. Regardless the selected cost 

function and MU synchronization level, the median precision of 

motor unit identification in elicited contraction is ≥ 95 % and is 

comparable to the precision in voluntary contractions. On the 

other hand, median miss rate increases significantly from < 1 % 

to ~ 3 % with the tested level of MU synchronization.   

Clinical Relevance—The identification of MU firings from 

HDEMG in elicited muscle contractions provides a new tool for 

in vivo investigation of motor excitability in humans. 

I. INTRODUCTION 

In the last two decades, motor unit (MU) identification 
from high-density surface electromyograms (HDEMG) gained 
a lot of scientific attention [2][4][6], providing a new tool for 
non-invasive in vivo investigation of neural codes during 
isometric voluntary muscle contractions. HDEMG 
decomposition methods are based on blind source separation 
approach, which first blindly estimates the MU filter and then 
applies it to the HDEMG signals to yield the MU spike train. 
In the last step, this spike train in segmented in order to 
separate the MU firings from the base line noise [9][10].  

This decomposition approach highly efficiently combines 
the information from different HDEMG channels, calculating 
the optimal MU filter with predefined spatio-temporal support 
[10]. The MU filter can be optimized in calibration 
contractions and then applied directly to the newly recorded 
HDEMG in order to yield MU firings. This increases the 
robustness of MU identification as, in the calibration phase, 
MU filter can be optimized across several hundreds of MU 
firings and then applied to a very short HDEMG signals, such 
as the ones recorded during maximal or explosive muscle 
contractions [14]. In this way the statistical power of MU filter 
is efficiently transferred from the calibration to the 
exploitation phase (i.e. to new contraction).  
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Similarly, the MU filter optimization in calibration phase 
can be exploited for real-time decomposition of HDEMG 
signals. In this case, the MU filters are first estimated off-line 
and then applied in real time to the incoming HDEMG 
samples, enabling the online feedback on the activity of MUs 
to the measured subject [7].   

In this study, we demonstrate that this prelearning of MU 
filters in the calibration phase can be utilized to identify MU 
firings also in the case of electrically elicited muscle 
contractions where the MU firings are highly synchronized. In 
particular, we test efficiency of different cost functions in 
gradient-based optimization of MU filters from HDEMG and 
their effects on the MU firing identification in the electrically 
elicited muscle contractions. As the methodology for 
experimental validation of MU identification in electrically 
elicited contraction is currently non-existing, at least to the 
beast of our knowledge, we base our analysis on the synthetic 
HDEMG signals with known MU firing patterns. 

 

II. HDEMG SIGNALS AND MU FILTER OPTIMIZATION 

A. HDEMG data model 

During short isometric muscle contractions, MU action 

potentials (MUAPs) can be assumed stationary and the 

HDEMG can be modeled as [9]:
 
 

     𝒚(𝑛) = 𝐇𝐭(𝑛) +  𝛚(𝑛),             (1) 

where  𝒚(𝑛) = [𝑦1(𝑛) … 𝑦1(𝑛 − 𝐹 + 1) … 𝑦𝑀(𝑛 − 𝐹 + 1)]𝑇  

contains blocks of F consecutive samples of M measurements 

(F is typically set between 5 and 15 [9]), 𝛚(𝑛) =
[ω1(𝑛) … ω𝑀(𝑛 − 𝐹 + 1)]𝑇 is noise vector and  

      𝐭(𝑛) = [𝑡1(𝑛) … 𝑡1(𝑛 − 𝐿 − 𝐹 + 1) … 𝑡𝐽(𝑛 − 𝐿 − 𝐹 + 1)]
𝑇
  

with 

      𝑡𝑗(𝑛) = ∑ 𝛿 (𝑛 − 𝜏𝑗(𝑘))𝑘 ,       j=1,...,J       (2) 

comprises blocks of L+F consecutive samples from J MU 

spike trains. In (2), δ(. )
 
is a unit-sample pulse and 𝜏𝑗(𝑘) 

denotes the time of the k-th firing of the j-th MU.  

The mixing matrix  
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 𝐇 = [
𝑯11

⋮
𝑯𝑀1

𝑯12

⋮
𝑯𝑀2

⋯

⋯

𝑯1𝐽

⋮
𝑯𝑀𝐽

],                       (3) 

contains MJ blocks of size F×(F+L), whereat block 𝐇𝑖𝑗  

comprises temporarily shifted repetitions of L samples long 

MUAP from the j-th MU as detected by the i-th uptake 

electrode: 

𝐇𝑖𝑗 = [

ℎ𝑖𝑗(1) … ℎ𝑖𝑗(𝐿)    

⋮ ⋱ ⋱
0 … ℎ𝑖𝑗(1)

… 0
⋱ ⋮
… ℎ𝑖𝑗(𝐿)

] .       (4) 

B. MU filter optimization 

Convolution Kernel Compensation (CKC) method initializes 

the filter of the j-th MU [9]: 

 

𝐟𝑗= 𝒚(𝑛0)𝑇𝐂𝒚
−1 

 

where 𝑛0 denotes randomly selected time moment with 

HDEMG activity above the noise level,   𝐂𝒚 = 𝐸(𝒚(𝑛)𝒚𝑇(𝑛)) 

is the correlation matrix of HDEMG signals and 𝐸(. ) stands 

for mathematical expectation. Afterwards, CKC iterates the 

following equations [9]: 

𝑡̂𝑗(𝑛) = 𝐟𝒋
𝑇𝒚(𝑛)               (5) 

𝐟𝑗 = 𝐟𝑗 + 𝛼𝐸 (𝑔(𝑡̂𝑗(𝑛))𝒚(𝑛))
𝑇

𝐂𝒚
−1        (6) 

𝐟𝑗 = 𝐟𝑗/‖𝐟𝑗‖                 (7) 

 

where 𝛼 < 1 is a step size, 𝑔(. ) stands for element-wise non-

linear weighting function, representing the derivative of the 

cost function that is being optimized by the gradient-based 

optimization. In order to avoid the determination of the step 

size 𝛼, Gauss-Newton optimization can be used in place of 

Eq. (6) [12].  In this study, the following weighting functions 

have been tested:  

𝑔1(𝑡) = log (1 + t2)              (8) 

𝑔2(𝑡) = tanh (t2)               (9) 

𝑔3(𝑡) = 𝑡 ∙ 𝑒−t2/2                  (10) 

 

Function 𝑔1 was proposed in [11], whereas functions 𝑔2 and 

𝑔3 are slightly modified from [12]. All these functions support 

robust MU identification (in the sense of base line noise and 

outliers), as they amplify the MU spikes on interval [0,1] 

whereat they limit (𝑔1 and 𝑔2) or even penalize (𝑔3) larger 

MU spikes.  

III. SIMULATIONS 

We used cylindrical volume conductor model [3] to 
simulate HDEMG signals during voluntary and elicited 
contractions of biceps brachii muscle. For this purpose, 200 
MUs were randomly distributed within the elliptical cross-
section of size of 30 × 15 mm with the average density of 20 
fibres/mm2 [1]. Muscle fiber length was set to 130 mm with 
the innervation zone spread for 5 mm around the center of the 

fibers. The fat and the skin layers were 4 mm and 1 mm thick, 
respectively. The size of the MUs ranged from 24 to 2408 
fibers and was exponentially distributed with many small and 
fewer big MUs [8]. MUAP conduction velocity was normally 
distributed with a mean of 4.0 ± 0.3 m/s. 

 MU firing patterns during the voluntary contraction were 

generated by the model described in [5], whereat we adapted 

the parameters to the properties of Biceps Brachii muscle. For 

these reasons, the MU recruitment thresholds ranged from 0 

to 80 % of maximal excitation level, following the 

exponentially decreasing distribution [8]. The MU firing rate 

increased linearly with the simulated excitation level, from 8 

pulses per second (pps) at the MU recruitment to 35 pps at 

maximal excitation [13]. The interspike interval was normally 

distributed with standard deviation set to 20 % of its mean 

value.  The 10 s long voluntary contraction at 30 % of the 

maximal excitation level was simulated, resulting in 155 

active MUs.  

 
Figure 1.  Generated MU firing patterns during the simulated elicited 

contraction (each colored dot is a MU firing) and corresponding HDEMG 
signals (Panel B). For clarity reasons only 2 channels of HDEMG signals 

are depicted. 

 

The length of the elicited muscle contraction was also set to 

10 s, with 10 simulated compound muscle action potentials 

(CMAPs) per second. For each CMAP, the MU firing times 

were normally distributed around the common mean value, 

with the standard deviation set to 13 ms, 7 ms, 3 ms, and 1 

ms. This resulted in MU spike train synchronization 

(tolerance of 0.5 sample) of 10%, 20%, 40% and 80%, 

respectively. In order to facilitate the assessment of MU 

identification accuracy, 1/3 of randomly selected firings per 

MU were deleted during the elicited contraction. Firing 

patterns of voluntary and elicited muscle contraction were 

concatenated together, resulting in 20 s long muscle 

contractions. The example of generated firing pattern during 

simulated 80 % synchronization is depicted in Fig. 1. 

HDEMG signals were detected by an array of 10 × 9 circular 

electrodes with diameter of 1 mm and the interelectrode 
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distance of 5 mm. Sampling frequency was 2048 Hz. The 

colored noise (bandwidth 20-500 Hz) was added to each 

HDEMG channel. The signal-to-noise ratio (SNR) was set to 

30 dB. For each synchronization level, five different 

simulation runs were performed, with randomly distributed 

MUs within the simulated muscle tissue in each run.   

A. Data analysis 

The first 10 second of generated HDEMG signals (voluntary 

contraction) were decomposed by CKC method [9] with 

extension factor F=15 and the weighting function g(t) set to 

functions defined in Eqs. (8)-(10). For each weighting 

function, 50 decomposition runs were performed. Each 

identified MU spike train 𝑡̂j(𝑛) was segmented as proposed in 

[11]. Afterwards the Pulse-to-Noise Ratio (PNR) was 

calculated [11]: 

 𝑃𝑁𝑅 (𝑡̂j(𝑛)) = 10 ∙ log (
𝐸(𝑡̂𝑗

2(𝑛)|
𝑡̂𝑗(𝑛)=1

)

𝐸(𝑡̂𝑗
2(𝑛)|

𝑡̂𝑗(𝑛)=0
)

), () 

where 𝑡̂𝑗
2(𝑛)|

𝑡̂𝑗(𝑛)=1
 is the energy of segmented MU spikes 

(firings), whereas 𝑡̂𝑗
2(𝑛)|

𝑡̂𝑗(𝑛)=0
 is the energy of segmented 

baseline noise. 
 

MU filters 𝐟𝑗 of MU that were identified with PNR ≥ 30 dB 

were saved and applied to the second 10 s of the HDEMG 

signals, identifying MU spike trains during the elicited muscle 

contraction. True positive (TP), false positive (FP) and false 

negative (FN) MU firings were identified with tolerance set 

to 0.5 ms. Afterwards, precision (Pr) and miss rate (MR) were 

calculated separately for voluntary and elicited contraction:   

 𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,    𝑀𝑅 =

𝐹𝑁

𝐹𝑁+𝑇𝑃
 , () 

Non-parametric Kruskal-Wallis test and paired Wilcoxon 

rank sum test were used for further statistical analysis. When 

significant effect was observed, Bonferroni correction was 

applied with significance level set to P < 0.05 

IV. RESULTS 

MU spike trains identified during the voluntary and elicited 
contraction are exemplified in Fig. 2. Weighting functions 
𝑔1(𝑡), 𝑔2(𝑡) and 𝑔3(𝑡)  identified 8.8 ± 1.8 MUs, 9.7 ± 2.3 
MUs and 5.2 ± 1.2 MUs, respectively.  Average precisions and 
miss rates in voluntary and elicited contractions are depicted 
in Fig. 3 and Fig. 4, respectively. For clarity reasons, 
individual measured values are also depicted with red circles.  

 
Figure 2.  Identified MU spike trains during the voluntary and elicited 
muscle contraction (MU synchronization level of 10 %) for weighting 

function 𝑔1(𝑡). TPs in voluntary (green circles) and elicited contraction 

(red circles) are also depicted, along with the simulated reference 

firings (black asterisk).   

 

 
Figure 4.  Precision (Pr) of MU firing identification during the 

voluntary (VOL) and elicited (ELIC) contraction as a function of 

weighting function g(t) and MU synchronization level: ↑ (↓) 
significantly higher (lower) than in voluntary contraction. 

V. DISCUSSION 

In voluntary contraction 𝑔1(𝑡), 𝑔2(𝑡) and 𝑔3(𝑡)  weighing 

functions yielded MUs with precision of (mean ± SD 

[median ± IQR]) 93.1% ± 10.4% [96.2% ± 4.5%], 94.4% 
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± 6.4% [95.7% ± 3.9%] and 96.0% ± 5.7% [97% ± 2.7%], 

respectively. When averaged across all the simulated MU 

synchronization levels in elicited contractions, these 

figures decreased to 91.2% ± 13.3% [96.6% ± 11.6%], 

90.4% ± 12.4% [94.3% ± 11.9%] and 95.9% ± 7.1% 

[98.5% ± 5.7%]. Regardless the weighting function, 

decrease in the precision was statistically significant for 

the highest two simulated synchronization levels (Fig. 3). 

At the same time, MU firing miss rates were 5.6% ± 

14.1% [0.8% ± 2.5%], 4.5% ± 11.4% [0.8% ± 2.5%]  and 

1.5% ± 7.8% [0.4% ± 0.8%]  in voluntary and 9.8% ± 

13.0% [3% ± 12.4%], 10.3% ± 14.2% [4.4% ± 10.3%]  

and 5.0% ± 7.4% [2.9% ± 4.1%] in elicited contractions. 

Due to relatively large number of outliers, the median 

values of precisions and miss rates were largely different 

from the mean values. At 80% MU synchronization, the 

precision of MU identification by CKC was significantly 

lower in elicited than in voluntary contraction, regardless 

the tested weighting function. Similar decrease was also 

observed at 60% synchronization for 𝑔1(𝑡) and 𝑔2(𝑡) 

functions. On the other hand, the miss rate consistently 

increased in elicited contractions, regardless the 

weighting function used. 

 
Figure 4.  Miss rate (MR) of MU firing identification during voluntary 

(VOL) and elicited (ELIC) contraction as a function of weighting 
function g(t) and MU synchronization level: ↑ significantly higher than 

in voluntary contraction. 

 

Although demonstrating higher precision and lower miss 

rate, CKC with 𝑔3(𝑡) weighting function identified 

significantly fewer MUs than CKC with 𝑔1(𝑡) and 𝑔2(𝑡) 

function (Fig. 3). Because the MU filters were identified from 

voluntary contraction, the number of identified MUs did not 

depend significantly on the synchronization level. Importantly, 

all the MUs identified in the voluntary contraction were 

successfully tracked also in the elicited contraction.  

This study was limited to the simulated conditions as it is 

very difficult to derive the ground truth about MU firings in 

experimentally recorded elicited contractions. Furthermore, no 

stimulation artefact was simulated. Thus, the capability of MU 

filters to cope with the stimulation artefacts remains to be 

analysed. In the worst case scenario, stimulation artefact 

should be masked out, meaning that they must not overlap with 

the CMAPs. Finally, relatively small instrumental noise was 

simulated in this study, though the number of simulated MUs 

and, thus, the physiological noise was relatively large.  

In conclusion, we tested the efficiency of different MU 

filter prelearning techniques in simulated cases of elicited 

muscle contractions and showed that the MU firings can be 

identified from CMAPs in HDEMG signals.  
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