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Abstract— Chest radiography has become the modality
of choice for diagnosing pneumonia. However, analyzing
chest X-ray images may be tedious, time-consuming and
requiring expert knowledge that might not be available in
less-developed regions. therefore, computer-aided diagnosis
systems are needed. Recently, many classification systems
based on deep learning have been proposed. Despite their
success, the high development cost for deep networks is still
a hurdle for deployment. Deep transfer learning (or simply
transfer learning) has the merit of reducing the development
cost by borrowing architectures from trained models followed
by slight fine-tuning of some layers. Nevertheless, whether
deep transfer learning is effective over training from scratch
in the medical setting remains a research question for many
applications. In this work, we investigate the use of deep
transfer learning to classify pneumonia among chest X-
ray images. Experimental results demonstrated that, with
slight fine-tuning, deep transfer learning brings performance
advantage over training from scratch. Three models, ResNet-
50, Inception V3 and DensetNet121, were trained separately
through transfer learning and from scratch. The former can
achieve a 4.1% to 52.5% larger area under the curve (AUC)
than those obtained by the latter, suggesting the effectiveness
of deep transfer learning for classifying pneumonia in chest
X-ray images.

I. Introduction
Pneumonia is a pathogenic infection of the lung

parenchyma, which is most commonly caused by bac-
teria or viruses, and less commonly by other micro-
organisms such as fungi [1]. The damages caused by
the infection and the host’s immune response results in
lung injury and disruption of pulmonary functions. More
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than one million adults are hospitalized with pneumonia
and around 50,000 die from the disease every year in
the US alone [2]. Pneumonia is a higher burden in
low-income countries where it is the leading cause of
death [3], where there is limited access to diagnostic
and therapeutic facilities.

Chest radiography is a widely available image modal-
ity; therefore, it has become the imaging of choice for
diagnosing pneumonia and many other thoracic con-
ditions. The most recognizable radiographic diagnostic
sign of pneumonia is the presence of “infiltrates” in a
chest X-ray, which are opacities caused by the accumula-
tion of pus, blood or other fluids, denser than air, in the
lung parenchyma and alveolar spaces. Analyzing chest
X-ray images requires expert knowledge that might not
be available in less-developed or remote regions of the
world. Also, it is a tedious and time-consuming task.
Thus, computer-aided diagnosis systems could become
viable tools for addressing these issues.

Since the availability of publicly accessible datasets,
such as ChestX-ray14 [4] and CheXpert [5], some clas-
sification systems based on deep learning techniques on
chest X-ray images have been proposed [4], [2], [5].

Deep transfer learning (or simply transfer learning)
[6], has become the most popular method of choice for
the implementation of deep learning for medical image
analysis because this approach requires less computa-
tional power and few to none training samples. It is the
practice of employing the structure and corresponding
weights of pre-trained models for tasks and datasets
for which they have not been originally designed. Pre-
trained models are either used for feature extraction or
fine-tuned to perform new tasks.

The opposite to deep transfer learning is training
from scratch, i.e. the model weights are randomly
initialized. For example, Stephen et al. constructed their
own convolutional neural network (CNN) model that
achieved high classification accuracy for pneumonia on
chest x-ray images [7]. Its crucial drawback is its high
development cost, making it a hurdle for deployment.

In medical image analysis, deep transfer learning has
been applied to a wide range of diagnostic modalities ,
including chest radiographs, [2], computerized tomogra-
phy (CT) scans [8], retinal fundus [9], and histopathol-
ogy images [10]. A study on breast histopathology
images demonstrated that deep transfer learning could
yield higher classification accuracy compared to models
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that have been built from the scratch [10]. However,
a comprehensive study [11] of deep transfer learning
for medical image analysis reveals that transfer learning
does not significantly improve classification performance
in the medical setting, compared to random weight
initialization. However, transfer learning is generally
Superior to conventional feature extraction methods
[12].

Therefore, whether deep transfer learning is generally
more effective compared to training from scratch in
the medical setting is still subject to research. The
objective of this study is to investigate the use of
deep transfer learning to classify pneumonia among
chest X-ray images. Experimental results demonstrated
that, with small training epochs, deep transfer learning
can bring performance advantages over training from
scratch. Three models, ResNet-50, Inception V3 and
DensetNet121, were trained separately with 20 epochs
using deep transfer learning and from scratch. Transfer
learning can achieve a 4.1% to 52.5% higher AUC value
than training from scratch.

II. Methodology

Given a (frontal) chest X-ray image, the problem is to
output a probability of the presence of pneumonia (see
Fig. 1). In other words, it is equivalent to the binary
classification of pneumonia (yes/no) from an input chest
X-ray image.

In this study, we used transfer learning to solve
the problem. The idea of transfer learning is to fine-
tune existing models which have been pre-trained on
other datasets for the specific classification tasks. This
approach makes the training task less computationally
expensive, since salient features of a chest X-ray image
have already been learned by the model.

A. Model Architecture
A model architecture for deep transfer learning, with

two configurations, is explored for pneumonia classifi-
cation. An illustration of the model architecture, with
two configurations, is depicted in Fig. 2.

1) Layer 0 - Existing model: An existing model is
obtained with either Configuration A - initialized with
random weights or Configuration B - initialized with
ImageNet weights. All layers of the existing model are
then set as non-trainable. The last 5 layers are then
removed.

2) Layer 1 - Global Average Pooling (GAP): Follow-
ing [13], a GAP layer is added to connect to the existing
model.

3) Layer 2 - Dropout Layer: To reduce over-fitting,
a dropout layer is added [14]. The dropout parameter
is set as 0.2, i.e., 20% of the inputs would be randomly
set as zeroes.

4) Layer 3 - Dense Layer: A dense layer is added with
512 neurons (relu activation). To reduce over-fitting,
following [15], a L2 regularization factor of 0.0005 is
added.

5) Layer 4 - Dropout Layer: To reduce over-fitting,
a dropout layer is added [14]. The dropout parameter
is set as 0.2, i.e., 20% of the inputs would be randomly
set as zeroes.

6) Layer 5 - Classification Layer: For the binary
classification of pneumonia, a dense layer with 1 neuron
(sigmoid activation) is added.

III. Experiments and Results
In this section, data collection and pre-processing are

described. The implementation, parameter setting and
performance evaluation are also described, followed by
a summary of the experimental results.

A. Data Collection
1) Training and Validation Datasets: ChestX-ray14

dataset [4], containing 112,120 frontal chest X-ray
Images of 30,805 unique patients, was obtained. The
dataset was annotated with the presence or absence of 14
thoracic pathology labels including pneumonia. Among
the 112,120 images, 86,524 of them were allocated to the
training list [4]. In this study, 90% of them were used
as training and the remaining 10% as validation set. In
other words, the training dataset contains 77,872 chest
X-ray images, and the validation dataset contains 8,652
chest X-ray images.

2) Testing Dataset 1: The models were tested on the
images which were put in the testing list of the ChestX-
ray14 dataset [4]. This dataset includes 25,596 frontal
chest X-ray images.

3) Testing Dataset 2: The models were further tested
on the validation dataset of CheXpert [5], including 203
frontal chest X-ray images, where each of them has been
labeled as pneumonia or non-pneumonia. These labels
were verified by three board-certified radiologists [5].

B. Implementation and Parameter Setting
The deep learning library Keras (http://keras.io/)

with TensorFlow [16] was adopted for implementation.
We set the number of epochs to 20 and the batch
size were to 256 images. Before inputting the images
into the network, the images were resized to 224×224.
During training, images were also augmented with the
following parameter setting: samplewise_centre = true,
samplewise_std_normalization = true, horizontal_flip
= true, vertical_flip = false, height_shift_range =
0.05, width_shift_range = 0.1, rotation_range = 5,
shear_range = 0.1, fill_mode = ‘reflect’, zoom_range =
0.15. The default loss function was binary cross-entropy.
The default optimizer was Adam [17]. All experiments
were run on a cloud environment provided by Kaggle
that has 11 GB RAM, an Intel(R) Xeon(R) CPU @
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Fig. 1. An overview of classification of pneumonia in chest X-ray images. Given a (frontal) chest X-ray image, a classification system
outputs a number between 0 and 1. For illustration, two chest X-ray images were extracted from the validation set in CheXpert [5].
(a) is from the study 1 of patient64544, with the filename as view1 frontal.jpg. No finding was observed. (b) is from the study 1 of
patient64552, with the filename as view1 frontal.jpg. Pneumonia was observed. These observations were verified by three board-certified
radiologists [5].
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Fig. 2. An illustration of the model architecture with two configurations, in this study. Layer 0 - Existing model: An existing model
is obtained with either Configuration A - initialized with random weights or Configuration B - initialized with ImageNet weights. All
layers of the existing model are then set as non-trainable. The last 5 layers are then removed. Layer 1 - Global Average Pooling (GAP)
Layer. Following [13], a GAP layer is added here to connect to the existing mode. Layer 2 - Dropout Layer. To reduce overfitting, a
dropout layer is added [14]. Layer 3 - Dense Layer. A dense layer is added with 512 neurons (relu activation). Layer 4: Dropout Layer.
To reduce overfitting, a dropout layer is added [14]. Layer 5: Classification Layer. For the binary classification of pneumonia, a dense
layer with 1 neuron (sigmoid activation) is added.

2.30GHz with 16 cores, with the neural networks trained
on GPU. Unless further specified, other parameters
remained at default settings.
C. Performance Evaluation

Following [4], [5], the performance of models was
evaluated by the area under the receiver operating
characteristic curve (AUC) to enable the comparison
over a range of prediction thresholds.

Three models, ResNet-50 [18], Inception V3 [19] and
DenseNet121 [20] were investigated in this study. Each
model was trained separately on configurations A and
B over the training dataset along with the validation
dataset. After training, each model was first evaluated
on Testing Dataset 1, followed by Testing Dataset 2.
The results are summarized in Table I.

ResNet-50: For results on Testing Dataset 1, ResNet-
50 [18] obtained an AUC of 0.59 when trained with
configuration B, compared with an AUC of 0.46 ob-
tained by training with configuration A, an improvement

of 28.3% in percentage change. For results on Testing
Dataset 2, ResNet-50 [18] obtained an AUC of 0.69 when
trained with configuration B, compared with an AUC
of 0.58 obtained by training with configuration A, an
improvement of 19.0% in percentage change.

Inception V3: For results on Testing Dataset 1,
Inception V3 [19] obtained an AUC of 0.55 when trained
with configuration B, compared with an AUC of 0.51 ob-
tained by training with configuration A, an improvement
of 7.8% in percentage change. For results on Testing
Dataset 2, Inception V3 [19] obtained an AUC of 0.61
when trained with configuration B, compared with an
AUC of 0.40 obtained by training with configuration A,
an improvement of 52.5% in percentage change.

DenseNet121: For results on Testing Dataset 1,
DenseNet121 [20] obtained an AUC of 0.71 when trained
with configuration B, compared with an AUC of 0.57 ob-
tained by training with configuration A, an improvement
of 24.6% in percentage change. For results on Testing

2188



Testing Dataset Experiments
Model Configuration A Configuration B

1: ChestX-ray14 [4]
ResNet-50 [18] 0.46 0.59
Inception V3 [19] 0.51 0.55
DenseNet121 [20] 0.57 0.71

2: CheXpert [5]
ResNet-50 [18] 0.58 0.69
Inception V3 [19] 0.40 0.61
DenseNet121 [20] 0.73 0.76

TABLE I
A comparison of AUC (area under the curve) on two testing datasets among three models trained with two configurations

Dataset 2, DenseNet121 [20] obtained an AUC of 0.76
when trained with configuration B, compared with an
AUC of 0.73 obtained by training with configuration A,
an improvement of 4.1% percentage change.

IV. Conclusions
In this study, we explored the use of deep transfer

learning to classify pneumonia in chest X-ray images.
In our experiments, three models, namely ResNet-50,
Inception V3 and DensetNet121, were trained separately
with 20 epochs using deep transfer learning and from
scratch. Transfer learning achieved better results than
training from scratch, an effect that may be generally
expected but needs verification in medical domains. It
has thus been demonstrated that with a small number of
training epochs, transfer learning can bring performance
advantages over training from scratch, when we are
dealing with vision-based diagnostic cases such as pneu-
monia. The results support the effectiveness of transfer
learning, providing a low-cost development option for
systems based on deep learning for faster and more
efficient clinical deployment.
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