
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep Learning in ex-vivo Lung Cancer Discrimination using
Fluorescence Lifetime Endomicroscopic Images
Citation for published version:
Wang, Q, Hopgood, J, Finlayson, N, Williams, GOS, Fernandes, S, Williams, E, Akram, A, Dhaliwal, K &
Vallejo, M 2020, Deep Learning in ex-vivo Lung Cancer Discrimination using Fluorescence Lifetime
Endomicroscopic Images. in 42nd Annual International Conferences of the IEEE Engineering in Medicine
and Biology Society. Institute of Electrical and Electronics Engineers (IEEE), 42nd Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Québec, Quebec, Canada, 20/07/20.
https://doi.org/10.1109/EMBC44109.2020.9175598

Digital Object Identifier (DOI):
10.1109/EMBC44109.2020.9175598

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1109/EMBC44109.2020.9175598
https://doi.org/10.1109/EMBC44109.2020.9175598
https://www.research.ed.ac.uk/en/publications/b51c5faa-5361-48e6-8e95-6ca97c350ec0


Deep Learning in ex-vivo Lung Cancer Discrimination using
Fluorescence Lifetime Endomicroscopic Images

Qiang Wang1, James R. Hopgood2, Neil Finlayson3, Gareth O. S. Williams1, Susan Fernandes1,
Elvira Williams1,Ahsan Akram1, Kevin Dhaliwal1, Marta Vallejo4

Abstract— Fluorescence lifetime is effective in discriminating
cancerous tissue from normal tissue, but conventional discrim-
ination methods are primarily based on statistical approaches
in collaboration with prior knowledge. This paper investigates
the application of deep convolutional neural networks (CNNs)
for automatic differentiation of ex-vivo human lung cancer
via fluorescence lifetime imaging. Around 70,000 fluorescence
images from ex-vivo lung tissue of 14 patients were collected
by a custom fibre-based fluorescence lifetime imaging endomi-
croscope. Five state-of-the-art CNN models, namely ResNet,
ResNeXt, Inception, Xception, and DenseNet, were trained and
tested to derive quantitative results using accuracy, precision,
recall, and the area under receiver operating characteristic
curve (AUC) as the metrics. The CNNs were firstly evaluated
on lifetime images. Since fluorescence lifetime is independent
of intensity, further experiments were conducted by stacking
intensity and lifetime images together as the input to the CNNs.
As the original CNNs were implemented for RGB images, two
strategies were applied. One was retaining the CNNs by putting
intensity and lifetime images in two different channels and
leaving the remaining channel blank. The other was adapting
the CNNs for two-channel input. Quantitative results demon-
strate that the selected CNNs are considerably superior to
conventional machine learning algorithms. Combining intensity
and lifetime images introduces noticeable performance gain
compared with using lifetime images alone. In addition, the
CNNs with intensity-lifetime RGB image is comparable to
the modified two-channel CNNs with intensity-lifetime two-
channel input for accuracy and AUC, but significantly better
for precision and recall.

I. INTRODUCTION

Fluorescence microscopy techniques have broad applica-
tions for the analysis of tissue specimens since they are
extremely sensitive and able to deliver rich information about
biochemical interactions at the molecular level. Along with
this intensity and spectral information, a unique characteristic
of fluorescence is its lifetime, i.e. the average time taken
for the decay from an excited state to the ground state.
The decay varies with the biological environment, e.g. pH,
but is usually independent of fluorophore concentration [1].
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As a result, fluorescence lifetime images are visually more
homogeneous than intensity images. Visual interpretation
of fluorescence lifetime endomicroscopic (FLIM) images is
extremely challenging even for experienced experts. Conven-
tional methods mainly fall into the application of statistical
technologies along with auxiliary information. A typical
scenario uses averaged lifetime by histogramming lifetime
images to distinguish normal/cancerous tissue based on the
corresponding histological images. Due to the independence
of lifetime from intensity, imaging a sample can result in
images different in intensity but similar in lifetime. In addi-
tion, lifetime of healthy tissue can be either shorter or longer
than unhealthy tissue. For example, Jo et al. [2] reported that
the lifetime for oral cancer is shorter than for non-cancerous
tissue. In contrast, McGinty et al. found that tumours have
a longer lifetime [3]. Furthermore, hardware configurations
and reconstruction methods, such as excitation wavelength
and reconstruction algorithms, also introduce differences in
derived lifetime.

Machine learning (ML), particularly deep learning (DL),
has revolutionized our world in many aspects. However,
few papers have addressed the application of ML to FLIM
images for automatic differentiation of normal/cancerous
tissue. The primary reason may be the shortage of real
data, the challenge of accurate interpretation of the data, and
the requirement of prior knowledge. Nevertheless, Gu et al.
[4] utilized a traditional feedforward neural network (NN)
classifier and extreme learning for training to detect cervical
neoplasia using FLIM on H&E-stained samples. Chen et
al. [5] tried an indirect strategy for skin lesion detection.
In their approach, artificial features extracted from lifetime
reconstruction results were utilized for automatic detection
by a Support-Vector Machine (SVM). Jo et al. [2] used
quadratic discriminant analysis to classify malignant and
benign lesions for oral cancer with six FLIM-based features.
The authors have applied four different ML technologies,
namely, K-nearest neighbour (KNN), SVM, random forest
(RF), and neural network (NN) to FLIM images [6]. Unlike
other approaches that use expert-engineered features, pixel
values of lifetime images were used as the input into the
four ML algorithms. Surprisingly, little research has been
conducted on the applications of DL to automatic differen-
tiation of human cancer with FLIM.

This study aims to investigate the feasibility of applying
CNNs for automatic classification of ex-vivo human lung
cancer with fluorescence lifetime images, with about 70,000
FLIM images collected from normal and cancerous tissue



of 14 patients by a custom fibre-based FLIM system [7]
1. For feasibility investigation, five well-recognized CNN
models, namely ResNet, ResNeXt, Inception, Xception, and
DenseNet, are chosen and compared with conventional ML
approaches.

II. METHODOLOGY

A. Data collection

The custom FLIM imaging system recorded sequences
of lifetime images with a resolution of 128×128 pixels,
at a frame rate of 9 frames a second, from two use-
specified spectral bands, which were aggregated across a
line sensor of single photon detectors. Each frame, therefore,
contains four images, yielding an intensity and corresponding
lifetime images for each of the two spectral bands. Lifetime
values were calculated using the rapid lifetime determination
method (RLD) [8].

For each ex-vivo tissue experiment, two freshly excised
unfixed lung tissue samples from each patient obtained from
cardiothoracic surgery: one normal and one cancerous. For
each piece of tissue, multiple measurements were conducted
at different physical points by direct contact of the fibre
with the tissue. Two different pixel exposure times of 6 and
20 µs were used to either enable high frame rates (6 µs)
or increased accuracy in lifetime determination (20 µs). It
is worth noting that once the configurations are fixed, the
regions of interest (ROIs) of the images were the same.
Around 70,000 fluorescence lifetime images were collected
from 14 pairs of lung normal/cancerous tissues. Fig. 1 depicts
an example of the experiment workflow, where normal and
cancerous lung tissues were fixed on a cork board, and
the resultant 128x128 images of autofluorescence intensity
and lifetime were generated with an exposure time 6 µs,
a spectral band of 498-570 nm, and RLD approach. These
settings were chosen representing intended characteristic
conditions for future clinical trials. Histology images for the
tissues were also presented for comparison purposes.

B. Image pre-processing

Unlike the fluorescence intensity images, fluorescence
lifetime images are more homogeneous since they are inde-
pendent of fluorophore concentration [1]. To derive plausible
lifetime from intensity using RLD method, optimal signal-
noise ratio (SNR) of the intensity measurement needs to be
obtained. In this study, we used a threshold value

√
Î related

to SNR, where Î is the mean of the measured intensity. A
fluorescence intensity greater than the SNR is required to
perform a lifetime calculation of acceptable accuracy.

Let II = {iIx,y|iIx,y ≥ 0 and x, y ∈ [0,M ]} denote
a intensity image II with size of M × M , and IL =
{iLx,y|iLx,y ≥ 0 and x, y ∈ [0,M ]} denote the corresponding
lifetime image IL with size of M ×M . A simple filter can

1The datasets will be available on https://proteus.ac.uk/technology/signal-
processing/.

be defined as:

îIx,y =

{
0 iIx,y ≤

√
Î

iIx,y otherwise
(1)

îLx,y =

{
0 iIx,y ≤

√
Î

iLx,y otherwise
(2)

Afterwards, the intensity images are normalized with dark
background D and lightfield images L. The normalization is
adapted from [9] as:

ĪI =
G∗(ÎI −D)

G∗(L−D)
(3)

where ĪI is the intensity image and G∗ is a convolutional
Gaussian smoothing filter with a 3×3 kernel defined in [10].
Later, a histogram-based contrast enhancement approach [10]
is applied to the normalised images to further improve the
quality of the images. Eventually, the normalized intensity
image is used as a mask on the thresholded lifetime image to
yield the pre-processed intensity and corresponding lifetime
images.

C. Convolutional neural networks

Contemporary architectures, like the Inception [11],
ResNet and its variants [12], [13], Xception [14], and
DenseNet [15], have advanced the state-of-the-art clas-
sification performance significantly. In this study, we
use ResNet50, ResNeXt50, Inception V3, Xception, and
DenseNet121, implemented by Keras.

Lifetime images, shown in the middle of Fig. 2, are the
input of the models. In addition, we also stack intensity and
its corresponding lifetime images to reflect the independence
of fluorescence lifetime from its intensity and make full use
of the available images. Since the original implementation of
the selected models requires RGB images as input, intensity
and lifetime images are put into different channels of an
RGB image, where the intensity and lifetime images are
normalized to [0.0, 1.0]. Fig. 2 demonstrates an example
of the stacking. Furthermore, we adapt the CNNs to be
suitable for two-channel input, in order to investigate the
impact of keeping a blank channel in the input images on
the classification.

D. Evaluation Metrics

In order to quantify the performance of the CNNs on the
inputs of lifetime images, two- and three-channel lifetime
and intensity images, we use three metrics for the evaluation,
including accuracy, precision, and recall. Let TP, FP, TN and
FN denote true positive, false positive, true negative, and
false negative, respectively. Accuracy, precision, and recall
can be defined as:

Accuracy =
TP + TN

TP+FP+TN+FN
(4)

Precision =
TP

TP+FP
(5)

Recall =
TP

TP+FN
(6)



Fig. 1. Typical prepared sample with a normal tissue sample (top of the first column) and a cancerous sample (bottom of the first column). An example
of fluorescence intensity (second column) and lifetime (third column) images collected by the system on a normal and cancerous tissue (first column),
along with the lifetime histogram (fourth column) and the histology images (fifth column).

Fig. 2. Intensity (left), lifetime (middle), and the stacked (right) images.

In addition, we also use the area under receiver operating
characteristic (ROC) curve (AUC) as the fourth metric. A
ROC curve uses two parameters, true positive rate (TPR) and
false positive rate (FPR), to demonstrate the performance of
a classification model at different classification thresholds.
TPR is calculated by (6) as recall, and FPR is defined as:

FPR =
FP

TP+FN
(7)

AUC measures the area underneath the ROC curve.

III. RESULTS

We used one-out-of-all testing on three independent
datasets from three patients. That is, 13 patients’ images were
utilized for training and validation and the remaining dataset
from one patient for testing. By repeating the procedure
three times and each time on a different patient. 10% of
training data from 13 patients were split out for validation.
All models were trained using Adam optimizer [16] with
the parameters β1 = 0.9 and β2 = 0.99. The learning
rate was initialized to 0.001, and divided by 10 at epoch
50 and 75. All models were trained and validated with 100
epochs of batch size 32. We use cross-entropy as the loss
function. Weights are initialized using He’s method [17]. In
addition, we also employ weight decay equal to 1e-4. For
data augmentation, we utilize the same strategy reported in
[12], [15]. All training and testing were performed using

NVidia V100 GPU provided by EPCC Cirrus2 and JADE3.

TABLE I
PERFORMANCE COMPARISON. THE BEST SCORES FOR EACH CATEGORY

ARE IN BLUE, AND THE OVERALL BEST SCORES ARE IN RED.

Conventional ML approaches [6]
Accuracy Precision Recall AUC

KNN 0.613 0.563 0.559 0.608
SVC 0.767 0.734 0.742 0.765
NN 0.763 0.722 0.752 0.761
RF 0.778 0.83 0.627 0.763

CNNs on lifetime images
Accuracy Precision Recall AUC

ResNet50 0.828 0.83 0.893 0.813
ResNeXt50 0.785 0.824 0.812 0.779

DenseNet121 0.795 0.831 0.823 0.788
Inception 0.794 0.838 0.812 0.79
Xception 0.769 0.854 0.739 0.777

CNNs on intensity+lifetime 3-channel input
Accuracy Precision Recall AUC

ResNet50 0.816 0.804 0.943 0.767
ResNeXt50 0.839 0.839 0.902 0.824

DenseNet121 0.865 0.88 0.895 0.858
Inception 0.852 0.876 0.874 0.846
Xception 0.817 0.895 0.785 0.825

Modified CNNs on intensity+lifetime 2-channel input
Accuracy Precision Recall AUC

ResNet50 0.822 0.761 0.856 0.826
ResNeXt50 0.848 0.816 0.806 0.841

DenseNet121 0.821 0.774 0.787 0.815
Inception 0.855 0.813 0.832 0.851
Xception 0.843 0.798 0.818 0.839

Table I lists the quantitative results, including accuracy,
precision, recall, and AUC, from both four conventional ML
algorithms from [6], i.e. K-nearest neighbour, support-vector
classifier, neural network, and random forest, and the selected
five contemporary CNNs, including ResNet50, ResNeXt50,
Inception V3, Xception, and DenseNet121.

2http://www.cirrus.ac.uk
3http://www.jade.ac.uk



Overall, the selected CNNs surpassed the ML approaches
for almost every metric. The results reflect that considering
two-dimensional spatial information in lifetime images by
convolutions in CNNs achieves better performance than one-
dimensional pixel values in the ML algorithms. It is worth
noting that the amount of data used in [6] is less than those
in this study, which might introduce some uncertainty of the
classification results.

As far as the CNNs are concerned, different input formats
also influences the resultant quantities. In general, using
lifetime images only as input is inferior to combining in-
tensity and lifetime images together. This is primarily due
to the introduction of an extra dimension, i.e. the intensity
information. However, the precision and recall scores given
by lifetime only are better than two-channel input, but they
are still not as good as three-channel input. When it comes to
the combination of intensity and lifetime images, the CNNs
with the three-channel input are comparable to the modified
CNNs with the two-channel input in accuracy and AUC.
In contrast, the precision and recall scores by the former
are considerably better than the latter. This might be due to
that the CNNs were designed for three-channel RGB images,
whereas the modified ones were not fully optimized for two-
channel input. It might also be because that the third zero-
value channel may be marginally beneficial by adding extra
sparsity in the network which could be more suitable for our
data.

IV. CONCLUSIONS

In this work, we investigated the feasibility of applying
deep convolutional neural netwoks to fluorescence lifetime
images for ex-vivo human lung cancer classification. Through
the experimental results, we addressed three critical questions
which have not been answered previously for DL in FLIM-
based human lung cancer classification:

• The selected CNNs outperform the ML algorithms on
FLIM images;

• The CNNs with lifetime images only are inferior to
those with the combination of intensity and lifetime
images, although the former are slightly better than the
latter with two-channel intensity and lifetime input in
precision and recall; and

• The CNNs with three-channel intensity and lifetime
images are superior to those with two-channel input,
even though they are comparable in accuracy and AUC.

Despite the encouraging results, there are several aspects
worth of further investigation. First is to enhance the quality
of the input images so that the classification outcomes
could be improved. Since the reconstructed FLIM images
are rich in multi-dimensional information, such as excitation
wavelength, how to integrate multi-dimensional information
into the CNNs is another challenge. Finally, due to the
unique characteristics of fluorescence lifetime and its images,
further research should be conducted on the development
of special architectures suitable for such images, although
general-purpose CNNs have achieved remarkable outcomes.
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