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Abstract—Recent advances in digital imaging has trans-
formed computer vision and machine learning to new tools for
analyzing pathology images. This trend could automate some of
the tasks in the diagnostic pathology and elevate the pathologist
workload. The final step of any cancer diagnosis procedure
is performed by the expert pathologist. These experts use
microscopes with high level of optical magnification to observe
minute characteristics of the tissue acquired through biopsy and
fixed on glass slides. Switching between different magnifications,
and finding the magnification level at which they identify the
presence or absence of malignant tissues is important. As the
majority of pathologists still use light microscopy, compared to
digital scanners, in many instance a mounted camera on the
microscope is used to capture snapshots from significant field-
of-views. Repositories of such snapshots usually do not contain
the magnification information. In this paper, we extract deep
features of the images available on TCGA dataset with known
magnification to train a classifier for magnification recognition.
We compared the results with LBP, a well-known handcrafted
feature extraction method. The proposed approach achieved
a mean accuracy of 96% when a multi-layer perceptron was
trained as a classifier.

Index Terms—Microscope, pathology, magnification, deep
learning

I. INTRODUCTION

A biopsy followed by specimen preparation in laboratory
and a subsequent microscopic examination by a trained
pathologist is necessary for a definitive diagnosis of any type
of cancer and many other diseases. Hematoxylin and eosin
(H&E) staining is applied to thin cuts of the biopsy sample
to visualize the structural patterns and any distortion of the
tissue. To differentiate benign from malignant cells and to
extract the distinctive cell features, the pathologist generally
observes the tissue at several magnification levels to gain
a more comprehensive understanding of the specimen. The
size of the area under observation decreases with increase
in magnification, allowing experts to view the enlarged
tissue and observe the minute characteristics relevant for
diagnosis. Some microscopes are equipped with a mounted
camera that is used to capture snapshots from the glass slide.
Pathologists create snapshots of the tissues and save them for
future reference in reports or for research purposes. These
snapshots usually miss some crucial information such as the
magnification level which is required for many classifica-
tion tasks. Therefore, the use of these snapshots for future
research is quite limited particularly if there are large and

diverse repositories of such snapshots of different organs
and diseases. This limitation is the main motivation for this
work [1], [2].

The trade-off between the superior performance and time
complexity in computer vision research is mainly noticeable
when it comes to feature extraction. There are several al-
gorithms for feature extraction like SIFT, HOG and LBP
which are based on handcrafted design. In contrast, there
are also deep learning methods using convolutional neural
networks (CNN) like VGG, ResNet and Incecption which are
based on learning from data. The modern AI algorithms have
been intensively investigated recently [3]. Deep networks can
learn distinctive image features, while traditional algorithms
implement a series of functions on the image to extract
important characteristics. These features are being deployed
for various classification and content-based image retrieval
tasks [4]. Both techniques, handcrafted and learning-based,
have proven to perform well for different applications al-
though deep features are reported to generally be much more
expressive [5], [6]. Recent publications have investigated
this problem to be generic in histopathology domain. Several
approaches for classification of malignancy in breast cancer
images, for instance, have been performed using various
techniques. Bayramoglu et al. [7] utilized deep features while
Gupta et al. [8] used color texture features and evaluated the
influence of magnification on classification model to identify
malignancy. Otalora et al. [6] focused only on magnification
level and implemented a CNN-based regression to find the
magnification level using multiple open access datasets.

This paper is organized as follows: The feature extractors
and classification algorithms are briefly discussed in sec-
tion II. The dataset is introduced in section III. section IV
explains the methodology used in the study. Experiments
and results are discussed in section V. Finally section VI
concludes the paper.

II. BACKGROUND

A. Feature Extraction

1) Local Binary Pattern (LBP): LBP is a conventional
feature extraction algorithm. Ojala and Pietikainen’s research
in multi-resolution approach [9] proved LBP’s useful appli-
cation in text identification [10] and histopathology classifi-
cation [11], [12]. A combined approach of LBP descriptor
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with histogram of Oriented Gradients (HOG) descriptor was
used by Wang [13] to improve the detection performance.

There are many LBP variations available which can ad-
dress the effect of rotational invariance uniformity on neigh-
borhood pixels [14]. A brief description of most recent
applications of LBP are discussed in a survey [15].

2) Pre-Trained Deep Nets: Pre-trained deep networks
can be employed to transfer knowledge from one domain
to another domain. For instance, DenseNet121 is a deep
convolutional neural network proposed by Huang et al. [16]
that has been applied to many different problems. Recent
publications emphasize the capabilities of artificial neural
networks and their performance in several classification and
search-based tasks [17], [18].

B. Classifiers

There is a large body of literature on different algorithms
for data classification. We restrict ourselves to the following
two approaches mainly because of our previous experience
with these methods.

1) Artificial Neural Networks (ANNs): ANNs are clas-
sifiers with the capability to simulate the function of the
human brain at a very small scale and for a given task. They
are commonly used as robust classifiers in machine learning
when a large body of labelled data is available for training.
The network mainly consists of three primary layers: the first
layer represents input neurons; the last layer represents output
neurons; and hidden layers consist of a series of weighted
layers which minimize the error between actual output and
predicted output. It is difficult to interpret the trajectory of
ANNs toward output to understand the rational behind the
decision.

When we talk about ANNs we generally mean shallow
networks (less than 5 layers), in contrast to convolutional
neural networks like DenseNet, ResNet and VGG-19 that
are deep networks with many hidden layers.

2) Random Forests (RF): Random Forest (RF) classifiers
are multi-way decision trees with some randomization used
to grow each tree as a potential solution. The leaf nodes rep-
resent the posterior distribution of each image class. Internal
nodes contain a test split based on the maximum information
gained from the feature subspace. Bosch et al. implemented
image classification using random forests beating state-of-
the-art results [19].

III. DATASET

We used publicly available data from The Cancer Genome
Atlas (TCGA). An important characteristic of this dataset
is the available objective power of the whole slide images,
which represents different magnification levels. Other pub-
licly available datasets like PMC do not contain magnification
information, making them unsuitable for this study. Each
image was stored at various magnification levels and in a
pyramid structure. The subset from the original dataset was
created using an indexing algorithm, which would randomly
index one whole slide image (WSI) at a time. If the objective

power(i.e., the magnification of base layer) of 40x or 20x
was absent, we discarded that WSI. In total, we gathered
29,596 WSIs for creating our magnification specific dataset.
For these WSI files we randomly selected the coordinates of
5 points, read the image at respective magnifications from
that specific coordinates and took a snapshot at each point.
This yielded us the total of 693,518 patches, consisting of
147,477 patches at 2.5x,5x,10x and 20x and 103,611 at 40x.
A region of a sample snapshot at different magnification
levels is represented in Figure 1.

IV. METHODOLOGY

For classifying the magnification, two models are trained
based on different features, one CNN-based approach using
DenseNet121 and one conventional algorithm, namely Local
Binary Patterns (LBP). The vectors obtained by each feature
extractor is considered as an input for classification models.
These features are independently fed into ANNs and RF to
train them for magnification recognition. The performance
of classification is evaluated using a 5-fold cross-validation
with 80%-20% split for training and testing, respectively.
The accuracy provides a performance index for correct
classification, kappa score provides empirical probability of
agreement associated to each label and the F1-score provides
the arithmetic mean of precision and recall [6], [20].

A. Feature Extraction with LBP

The feature vectors obtained through the application of
LBP are conserved in histograms. We used rotationally
invariant LBP with three parameter settings for radius r and
neighbors n. For radius r = 1 and neighbours n = 8 we
got features with 10 dimensions (bins). Radius r = 2 and
neighbours n = 16 resulted in features with 16 bins, and
features with 26 bins were the result of radius r = 3 and
neighbours n = 24.

B. Deep Features using DenseNet121

Using pre-trained features for histopathology images has
been the focus of attention in recent literature [21]. Image
features were extracted from the last average pooling layer in
DenseNet121. Before passing through the feature extractor,
we pre-processed all images by making the mean zero.
The input tensor flows through convolutional feature layer
to capture low-level information consisting of shapes from
histopathology images. This was followed by a series of 4
dense blocks. These dense blocks have 6, 12, 16 and 24
layers of batch normalization, reLu and 2D- convolutional
layers stacked alternatively. The feature vector from the last
average pooling layer contained 1,024 dimensions which
were passed to the classifier to represent the corresponding
image magnification.

In total, we had 4 individual feature sets for our dataset.
One may argue that using ANNs is considered a fine-tuning
technique, but for all our experiments we treated classifica-
tion methods separate from feature extraction models.
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WSI 2.5x 5x 10x 20x 40x
Fig. 1: Illustration of patches from different magnification levels extracted from a WSI. All the patches are centered around
the same coordinates (images re-scaled for convenient visualization).

V. EXPERIMENTS AND RESULTS

A. ANNs
The shallow classifier that used deep features excelled in

performance. The accuracy was observed at 96.1% which
was achieved using 2 hidden layers and one fully connected
layer between input and output layers. The hidden layers had
512 neurons with batch normalization and a dropout rate of
0.5 followed by other fully connected layer of 256 neurons
and ReLU activation. This finally was connected to output
layer of 5 neurons which was activated using softmax. For
every ANN we matched the input layer neurons with the
dimensions of the input feature vector. For LBP features,
ANNs achieved an accuracy of 68.4%, kappa score of 0.603
and f1-score of 0.676 for one split. From Table I we can
easily identify the higher performance of deep features com-
pared to handcrafted LBP features. However, there is a trade-
off between real-time high performance and time complexity
plus the computational power utilized for extracting deep
features. The confusion matrix in Figure 2 shows that images
at a magnification level of 5x are mostly confused with class
of images at 2.5x and 10x magnification. The individual class
accuracy was 91% for 5x images. While images at 2.5x, 20x
and 40x were separated excellently with misclassification rate
of less than 1%.

B. Random Forests
We searched for best parameters using random searchCV

and grid searchCV from Scikit Learn library [20]. We used
1000 estimators for training the classifier, with a maximum
depth of 50 splits for individual trees. The final label assign-
ment was determined through majority voting from each tree.
The reported accuracy for classification using deep features
was 96% with kappa score of 0.95 and F1-score of 0.96 while
using LBP, the best accuracy obtained by RF classification
model was 68.4% with kappa score of 0.60 and F1-score
of 0.67. All results using RF classifier are listed in Table I.
Comparing the confusion matrices in Figure 2 a and b, we
can see that classifiers using deep features are more prone to
confusing 5x images compared to shallow classifiers. While
classes 20x and 40x are also more prone to misclassification
when RFs are implemented.

VI. CONCLUSIONS

In this paper, two feature extraction methods were used
to train two classifiers for discrete classification of magni-

(a) ANN Classifier

(b) RF Classifier

Fig. 2: Confusion matrix of the two classifiers.

fication levels in microscopic images. We used the TCGA
dataset to construct a large dataset for training and testing.
The feature extraction was done from raw images without
any pre-processing or segmentation. A shallow classifier
with deep features obtained from DenseNet121 had the best
performance in terms of accuracy (96%), kappa (0.95) and
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Features Folds Random Forests Shallow Classifier
Acc Kappa F1-Score Acc Kappa F1-Score

DF

Fold1 0.881 0.849 0.881 0.935 0.917 0.935
Fold2 0.879 0.849 0.879 0.96 0.95 0.96
Fold3 0.916 0.849 0.915 0.971 0.963 0.971
Fold4 0.924 0.905 0.924 0.972 0.966 0.973
Fold5 0.921 0.901 0.921 0.969 0.962 0.969

All Folds 0.904 ± 0.01 0.879 ± 0.025 0.904 ± 0.01 0.961± 0.01 0.951± 0.01 0.961± 0.01

LBP1

Fold1 0.520 0.392 0.509 0.514 0.382 0.501
Fold2 0.612 0.513 0.604 0.601 0.499 0.588
Fold3 0.649 0.560 0.643 0.598 0.496 0.583
Fold4 0.684 0.605 0.679 0.646 0.557 0.631
Fold5 0.684 0.605 0.678 0.655 0.568 0.646

All Folds 0.629 ± 0.06 0.535 ± 0.07 0.622 ± 0.06 0.602 ± 0.05 0.50 ± 0.06 0.589 ± 0.05

LBP2

Fold1 0.516 0.389 0.508 0.471 0.339 0.458
Fold2 0.582 0.476 0.571 0.565 0.453 0.556
Fold3 0.626 0.532 0.618 0.587 0.480 0.578
Fold4 0.656 0.569 0.649 0.613 0.516 0.607
Fold5 0.654 0.567 0.647 0.628 0.534 0.618

All Folds 0.606 ± 0.05 0.506 ± 0.06 0.598 ± 0.05 0.572 ± 0.05 0.464 ± 0.06 0.563 ± 0.05

LBP3

Fold1 0.546 0.425 0.536 0.507 0.375 0.493
Fold2 0.609 0.510 0.599 0.582 0.476 0.574
Fold3 0.649 0.561 0.643 0.634 0.542 0.622
Fold4 0.682 0.603 0.676 0.668 0.584 0.656
Fold5 0.676 0.595 0.671 0.640 0.551 0.631

All Folds 0.632 ± 0.05 0.538 ± 0.06 0.624 ± 0.05 0.606 ± 0.05 0.505 ± 0.07 0.595 ± 0.05

TABLE I: Results for deep features (DF) and LBP with 3 parameter settings.

F1-score (0.96). The score achieved by our model outper-
formed existing state-of-the-art regression method with 11%
improved kappa score. Because the TCGA dataset consists of
various categories of images and several organs, we assume
the model offers good generalization for magnification recog-
nition providing a basic pre-processing step for all digital
pathology image processing to attain better performance.

Microscopic snapshots may have a different image quality
than patches from whole slide images. Investigating this
difference will be subject of future work.
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