
Abstract— This paper introduces a simple approach 

combining deep learning and histogram contour processing for 

automatic detection of various types of artifact contaminating 

the raw electroencephalogram (EEG). The proposed method 

considers both spatial and temporal information of raw EEG, 

without additional need for reference signals like ECG or EOG. 

The proposed method was evaluated with data including 785 

EEG sequences contaminated by artifacts and 785 artifact-free 

EEG sequences collected from 15 intensive care patients. The 

obtained results showed an overall accuracy of 0.98, 

representing high reliability of proposed technique in detecting 

different types of artifacts and being comparable or 

outperforming the approaches proposed earlier in the literature.  

 

I. INTRODUCTION 

Electroencephalogram (EEG) represents a recording of the 
electrical activity of the brain mainly originating from the 
cortex. Both physiological and non-physiological artifacts are 
seen in the EEG even though they are not produced by the 
brain. These artifacts highly affect the interpretation of the 
signal and should be removed prior to analysis. The artifacts 
are especially present in the recordings of critically ill patients 
as these often are longer in duration and the artifacts arise from 
various sources including electromechanical equipment as 
well as staff and patient movements [1-4]. 

In literature, a wide range of methods have been proposed 
to identify artifacts in raw EEG utilizing both time and 
frequency domains. Most of the existing approaches rely not 
only on additional reference signals but also on extracting 
specific features [5-11]. 

In recent years, machine learning methods have been 
increasingly used for discriminating artifact-free EEG 
sequences from contaminated ones [12-17]. So far, there are 
only few methods in literature that address a fully automatic 
removal approach using deep learning on EEG data [18-20]. 
These studies focus on detecting specific types of artifacts 
which makes them hard to be generalized to cover artifacts 
resulting from different sources. Furthermore, these studies 
used recordings made with a full EEG cap which is 
challenging in the intensive care environment where electrode 
attachment with minimum preparation is beneficial.  
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In this study, we introduce a simple yet effective method 
based on combination of deep learning and histogram contour 
processing which not only needs no auxiliary reference signal, 
but also can detect different types of artifact with different 
characteristics in both amplitude and frequency. At the same 
time, spatial correlation is also considered in this method, as it 
is applicable the recordings of multiple channels. Moreover, 
our aim was to train and validate a simple deep learning-based 
artifact removal method and explore its performance 
considering only forehead EEG data which has been proved to 
be effective in intensive care units (ICUs) where securely 
maintaining electrodes’ contact and providing long-term high-
quality signal acquisition are essential [21]. 

II. DATA COLLECTION 

The EEG data was collected from 15 patients treated in the 
ICU of Oulu University Hospital. The patients did not have a 
history of significant neurological disease that could have been 
considered to affect EEG and were 18-85 years in age. During 
the recording, the patients were not mechanically ventilated 
and were recently diagnosed with hyperactive delirium. 
Delirium was treated with an administration of 
dexmedetomidine following the ICUs standard protocol to 
keep the patients moderately sedated. The study was approved 
by local ethics committee. Written informed consent was 
obtained either from the patient or his/her relative.  

The EEG recordings were carried out with a BrainStatus 

self-adhesive electrode (Bittium, Oulu, Finland) including ten 

EEG channels (Figure 1) and BrainStatus wireless device 

with a sampling frequency of 250 Hz. From the recordings, 

1570 30-s sequences were extracted offline. Half of these 

contained artifacts and half were artifact-free. The annotation 

of artifacts was manually made using visual inspection. 

Figure 1.  EEG electrode used for data collection [22]  
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III. METHOD 

Figure 2 shows the signal processing steps performed on 
the raw EEG data for the classification of an EEG sequence to 
either contain artifact or being artifact-free. First, a histogram 
of the EEG sequence was computed for each channel with bin 
number equal to the number of channels. Then, a histogram 
feature matrix was formed so that each row of the matrix 
corresponds to one channel. Next, a filled contour plot 
containing the isolines of the histogram feature matrix was 
generated (Figure 3 and Figure 4) and fed to a deep network as 
input image. This contour plot is an extremely simple yet 
useful way of summarizing and representing what 
simultaneously occurs in all EEG channels. 

The deep learning architecture used in this model for 
image-to-label classification consisted of a two-dimensional 
convolution layer, following by a batch normalization, Relu 
and fully connected layers. As the contour plot is not a 
complex image with wide range of colors, only one 
convolutional layer was considered to learn contour images. 
The 2-D convolutional layer applied sliding convolutional 
filters to the input contour image. The output of this network 

is a categorical response and therefore a Softmax and 
classification layers was also added as final layers. All layers 
were connected sequentially. This deep network classifies 
328-by-438 RGB images into the two classes i.e. artifact-free 
sequence and artifact-affected sequence.  

The training parameters of deep learning model are given 
in Table. 1. The mini-batch size and the maximum number of 
epochs were respectively set to 64 and 8. These small mini-
batches with short sequences were used to make it more 
suitable for training on the CPU. 5-fold cross-validation was 
also used to check the performance of model. 

TABLE I.  THE MODEL TRAINING PARAMETERS 

Parameter Value Parameter Value 

Momentum 0.9 Mini Batch Size 64 

Initial Learn Rate 1.0000e-03 Learn Rate Drop Factor 0.05 

L2 Regularization 1.0000e-04 Learn Rate Drop Period 5 

Max Epochs 8 Learn Rate Schedule Piecewise 

 
Figure 2.  Architecture of proposed method 

TABLE II.  PERFORMANCE OF DEEP LEARNING MODEL OVER OBSERVATIONS IN THE MINI-BATCH 

Epoch Iteration Time Elapsed 

(hh:mm:ss) 

Mini-batch 

Accuracy 

Validation 

Accuracy 

Mini-batch 

Loss 

Validation 

Loss 

Base Learning 

Rate 

1 1 00:00:27 34.38% 0.00% 0.9463 15.8386 0.0010 

3 50 00:03:01 92.19% 73.52% 0.8425 3.7368 0.0010 

5 100 00:05:34 100.00% 97.02% 2.9053e-05 0.3151 0.0010 

7 150 00:08:09 100.00% 98.21% 2.4028e-07 0.1687 5.0000e-05 

8 192 00:10:21 100.00% 96.37% 7.4506e-09 0.3922 5.0000e-05 



    

Figure 3.1. Raw EEG sequence Figure 3.2. Histogram contour of 

all channels 

  Figure 4.1. Raw EEG sequence Figure 4.2. Histogram contour of 

all channels 

Figure 3.  Examples of artifact-free EEG sequences   Figure 4.  Examples of EEG sequences including artifacts 



IV. RESULTS 

Table 2 summarizes the performance of deep learning 
model over the observations in the mini-batch. Figure 5 and 6 
show the convergence of average accuracy and loss function 
during training and validation for 8 epochs. According to these 
figures, accuracy and loss improve for both training and 
validation data and the best result is obtained with validation 
accuracy of 98.21% and validation loss of 0.1687. 

Figure 5.  Accuracy variation in each epoch 

Figure 6.  Loss function variation in each epoch 

V. CONCLUSION AND DISCUSSION 

This study introduced a simple and accurate method 
combining deep learning and histogram contour processing 
for automatic detection of artifacts in EEG recordings without 
requirement of auxiliary reference signal. Using the 
histogram contour was an extremely simple yet useful way of 
summarizing and representing what simultaneously happens 
in all EEG channels and therefore not only could be used to 
detect different types of artifact with different characteristics 
in both amplitude and frequency, but also takes into account 
spatial correlation of different EEG channels. The method 
was shown to be suitable in detecting artifacts from 
recordings collected with ICU-suitable electrode and device. 
The obtained results showed an overall accuracy of 0.98, 
representing high reliability of proposed technique in 
detecting different types of artifacts and being comparable or 
outperforming the approaches proposed earlier in the 
literature reaching the accuracy of 67.59 % for detecting four 
kinds of artifacts [18], and a median accuracy of 94.4 % for 
classifying ocular and cardiac artifacts [19]. 
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