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Abstract— In this paper, we propose the analysis method for
finding out the similarity of the muscle force patterns to mine
the risk factor of the anterior cruciate ligament (ACL) injury.
Akaike information criteria (AIC) under the assumption of the
auto-regression model is adapted to analyze the similarities of
muscle force patterns in time-series. The difference of AIC
values between 2 muscles is considered to be the distance
between 2 muscle force patterns and the dexterity of the
maneuver is expected to be discussed. We measured drop
vertical jump (DVJ) and use the data around the contact
timing of whom hadn’t had ACL injury experiments. The
results showed that we could successfully calculate AIC distance
according to the similarity of the time-series data pattern and
it can be useful to discuss one’s dexterity of controlling body
maneuvers soon after contact timing of DVJ motion.

I. INTRODUCTION
A. Background

Injuries during sports activities (sports injury) affect an
athlete’s performance not only at the time of being injuries
but also after his/her recovery. To develop a training method
for preventing sports injuries in advance, knowing the speci-
ficities of the athlete’s body maneuvers is desirable for better
instruction for improving their maneuvers.

However, what is the ideal maneuvers during athletic
events, and what is the dangerous maneuvers or risk factors
that cause athletes’ injuries are not enough clarified quanti-
tatively yet. Authors[1][2] have worked on the assessments
of the risk of the anterior cruciate ligament (ACL) injuries
by the measurement and analysis of the physical motions
during the drop vertical jump (DVJ) motions[3], which is
commonly used as a screening test for ACL injury risk
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Fig. 1. The measurement system and the outline of DVJ motion. (a) The
top-view of the measurement system. Three force plates are on the ground,
and the stage is put on one of the force plates. Four RGB cameras were
surround of the force plate and the stage. The line are illustrated 50cm-
former of the stage. (b) The side-view of the measurement system. The
outline of the DVJ motion are also illustrated. The participant is asked to
stand on the stage and to jump from the stage targeting the line illustrated
50cm-former of them. Soon after touching the ground, the participant try
to jump as high as they can.

assessment. As far, analysis of the DVJ motions mainly on
joint angles at a certain timing during the jump. However,
the recent development of the measurement tools enables
us to capture whole a motion easily and to acquire much
abundant information. Thus, new analysis frameworks such
as time-series analysis or muscle force analysis are required
to deeply know athletic maneuvers.

The muscle activities at the contact time are regarded to
be generated by the changing in time through the cooper-
ates among muscles, so we think that the analysis of the
cooperates among the muscles will bring us more detailed
risk assessment of the ACL injuries at the timing of getting
impact from the ground.

Akaike’s information criterion (AIC)[4] calculates simi-
larities of distributions between 2 different models. Akai et
al.[5] utilizes AIC to cluster questionnaire items as com-
paring answer patterns of a questionnaire. If we regard the
muscle activation pattern as one specific distribution model,
we can calculate the similarities as same as the answer
patterns of a questionnaire using AIC.

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 4799



B. Purpose of this research

This research is aimed at mining the body maneuvers
that cause ACL injuries through analysis of cooperations
among muscles during DVJ motion. We propose a time-
series analysis method that regards each muscle time-series
data as a series of measurement values and estimates the
similarities among the data distributions by calculating AIC
differences.

II. AIC-BASED ANALYSIS FOR TIME-SERIES DATA

A. Akaike Information Criteria[5]

AIC is one of indices that calculates the similarities of
the distributions using mutual information. Using the log-
likelihood l and the degree of freedom k, AIC is expressed
as −2(l − k). The log-likelihood l can be calculated by the
maximum likelihood estimation.

B. Time-series data pattern analysis by AIC

AIC had been introduced to design questionnaires[5] in
the risk assessment field. This method checks the cooccurent
of answers of items in a questionnaire and clusters the
items by their similarities. Questionnaires for assessments,
e.g., psychological effects after ACL injuries[6] and the
locomotive disorders mainly of elderly people[7][8] had
been designed. [6][7][8] had adapted the method described
in the previous subsection to the categorical data, so the
multinominal distribution model was used. However, since
our data is time-series data, we need to modify the suitable
distribution model. The difference of the model can be
regarded as the difference of perspectives we focus on. The
multinominal model is focusing on the coocurrence of the
data, whereas we’d like to focus on the synchronisity of the
data.

Let assume that the physical motion data x(t) at the
specific time point t is determined by previous physical
motion data measured during the certain time span, then
x(t) can be expressed as follows based on the autoregressive
model:

x(T ) =
M

∑
t=1

atxT−t + εt , (1)

where the number of weight parameters (the number of
samples that we use for the autoregression as the previous
data) M, the elements of weight vectors at , and the number
of samples of the physical motion data N. We assumed that
εt is generated according to the normal distribution of which
the mean is 0 and the variance σ2. We estimate the weight
at for the physical motion data and noise εt by the maximum
likelihood estimation and use them for AIC calculations.

The maximum log-likelihood can be expressed as

l = log p(â, σ̂2) =−N −M
2

log(2πσ̂2)− N −M
2

, (2)

where

σ̂2 =
1

N −M

N−M

∑
t=1

(xt −
M

∑
j=1

â jxt− j)
2. (3)

Then, F(x0(T )) and F(x1(T )); AIC for 2 time-series phys-
ical motion data at the time T , can be expressed as follows:{

F(x0(T )) = l0 −M0

F(x1(T )) = l1 −M1

In this paper, we treat the human physical motion data,
so the number of samples using for the autoregression M
is determined as referring to the neural reflexion velocities
of humans, i.e., 100ms. Also, M0 = M1. Then, calculating
∥F(x0(T ))−F(x1(T ))∥, we can acquire the difference of the
AIC between x0(T ) and x1(T ). Smaller this difference, we
can consider that these 2 time-series data are more similar.

III. PHYSICAL DVJ MOTION DATA MEASUREMENT

A. DVJ motion measurement

We conducted DVJ motion measurements for sport players
who are in their 10-20s and belong to amateur teams.
The measurement method is as follows[1]: The participant
jumped up from the 30cm-height stage pointing to the line
shown 50cm-former, and soon after they reached the showing
line jump vertically as high as possible they can. There
were 3 trials for each participant; the participants were
asked to contact the ground by their both feet, their right
foot, their left foot in each trial. The physical motion data
were collected by force plate (1000 fps) and the video
motion capture system (VMocap)[9]. VMocap enables us to
capture 3D joint positions from images taken by multiple
RGB cameras and can calculate inverse kinematics/dynamics
from the data, so we don’t need to attach any kind of
sensors on participants’ bodies and easily analyze natural
motions. Image data were captured in 30 fps from 4 RGB
cameras and joint positions were estimated from them.
Using the estimated joint positions, we can calculate inverse
kinematics and inverse dynamics of the musculoskeletal
model[10]. Throughout this VMocap flow, we can calculate
the estimated muscle force without any sensors attached to
the participants’ bodies. We defined the timing when the
participant toe/heel touches the ground at the first as IC
(Initial Contact) and the timing the participant’s knee was
bented maximally as MFK (Maximum Flexion of Knee), and
the timing when the participant jumps up soon after IC as
TO (Toe Off), and use the muscle force data from IC to
MFK / MFK to TO. Each timing was detected manually
from the joint marker positions reconstructed by the video
motion capture system. The measurement system and the
outline of DVJ motion are shown on Fig. 1. The experimental
procedures were approved by the ethical committee at the
University of Tokyo.

B. Time-series physical motion data for analysis

We selected 17-year-old female participant who had not
have experiences of ACL injuries. The right lower leg muscle
force during one’s trial of the right leg jump and the left
lower leg muscle force during one’s trial of the left leg jump
were analyzed. The number of frames using for the analysis
(the time between IC to MFK / MFK to TO), i.e., N in Eq.
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TABLE I
THE CORRESPONDING TABLE OF MUSCLES (PART OF THE BODY, ID,

NAME, NUM. OF LINKS)

Part of the body Muscle ID Muscle name Number of wires
1 Gluteus Maximus 6

Trunk 2 Gluteus Medius 3
3 Psoas Major 9

(around pelvis) 4 Iliacus 2
5 Tensor Fasciae Latae 1
6 Vastus Intermedius 1
7 Vastus Lateralis 1
8 Vastus Medialis 1
9 Rectus Femoris 1

10 Sartorius 1
Thigh 11 Semimembranosus 1

12 Semitendinosus 1
13 Grachilis 1
14 Adductor Longus 1
15 Adductor Magnus 3
16 Biceps Femoris 2
17 Gastrocnemius 2

Calf 18 Soleus 2

(2) is 11 frames (366 ms) /12 frames (400 ms) for the right
jump, and 9 frames (300 ms) /12 frames (400 ms) for the
left jump. The weight parameter M is set as 4 frames (120
ms), which is estimated as the time for the flexions.

Our musculoskeletal model[10] is a whole-body model,
but in this paper, we analyzed only the muscles of the
lower limbs for ACL injury risk assessment. The muscles
used for the analysis were 18 muscles expressed as 39
wires in the system. The 18 muscles were; Gluteus Max-
imus, Gluteus Medius, Psoas Major, Iliacus, Tensor Fasciae
Latae, Vastus Intermedius, Vastus Lateralis, Vastus Medi-
alis, Rectus Femoris, Sartorius, Semimembranosus, Semi-
tendinosus, Grachilis, Adductor Longus, Adductor Magnus,
Biceps Femoris, Gastrocnemius, Soleus. The correspondence
table between muscle names and the number of wires in
the system are shown on Tab. I. In this paper, we calculate
muscle forces as the sum of the force of each wire, and
calculate AIC for the 18 muscles (39 wires) of the right lower
limb during the right jump and the 18 muscles (39 wires)
of the left lower limb during the left jump, and regarded
the difference of AIC as the distance between 2 muscles
distributions, then tried to visualize them as the distance
matrix.

IV. MUSCLE COOPERATIONS ANALYSIS BY AIC

A. Results of distance calculations

Fig. 2 show the distance matrix for each wire. The color
of the (i, j) grid indicates the degree of the AIC difference
for the combination of muscles of ID i and ID j. Each ID
on the row/col in the Figure corresponds with the ID for
each muscle assigned in Tab. I. The darker color indicates
the smaller AIC difference, i.e., if the grid (i, j) showed
the darker color, the muscle i and j shows a similar trends
in time-series data from IC to MFK (the left side) and
from MFK to TO (the right side) of the DVJ trial. The
upper figures are the results for the right leg jump data, and
the lower figures are for the left leg jump data. The AIC
difference of one link (i = j) will be 0 because they are the
totally same data.

TABLE II
THE KNEE VALGUS ANGLES AT IC, MFK, TO

IC MFK TO

Right 177.9◦ 159.3◦ 174.6◦
Knee valgus Left 171.3◦ 169.8◦ 170.5◦

B. Similarities between muscle activity patterns

Since AIC calculate similarities of distributions of the
data, smaller AIC means that similar muscle activity patterns
between 2 muscles. So, if the (i, j) grid in Fig. 2 darker, the
muscle activity pattern of muscle i and muscle j are similar.
In other words, the muscle i and the muscle j are synchro-
nizing during the duration we focused on and calculated AIC
difference between them. From above discussion, it can be
said that if there is a row that is mainly in darker color,
the corresponding muscle activates syncronizing with many
muscles, whereas if there is a row that is mainly in lighter
color, the corresponding muscle activates independently.

Seeing the figures, rows and columns that are corre-
sponded with the combination among Vastus Intermedius,
Vastus Lateralis, and Vastus Medialis showed black color
in the figures of IC to MFK during both the right leg
jump. From the figure of MFK to TO during the left leg
jump, adding to the combination among these 3 muscles,
Rectus Femoris also showed a small AIC difference between
Vastus Intermedius, Vastus Lateralis, and Vastus Medialis,
each whereas the figure of MFK to TO during the right leg
jump only showed the combination between Vastus Lateralis
and Vastus Medialis. These four muscles are called as the
quadriceps and work as the extensor muscle of the lower
limb. Thus, we can say that we could extract similarities of
the data pattern by the proposed method.

Comparing Fig. 2 (a) and (b), muscle activation patterns
drasticaly change but the changing patterns were opposite
between the right leg (Fig. 2 (a)) and the left leg (Fig. 2
(b)). Since the knee valgus angles of the right/left leg at IC,
MFK, TO differs as shown on Tab. II, we compared with the
figures of right/leg muscles, the left leg showed wider range
of distances during IC to MFK whereas the right leg showed
the same tendency during MFK to TO. It indicates that the
muscle cooperation patterns in time series differs with the
side of the legs.

V. CONCLUSION

To proceed ACL injury prevention researches, we pro-
posed a muscle cooperation analysis method based on net-
work analysis using AIC on the time-series physical mo-
tion data during DVJ motion. In this paper, to adapt AIC
calculation to the time-series data, the autoregression model
is assumed and the log-likelihood was calculated. Also, the
evaluation method for the distribution similarity among time-
series data by taking the difference between the AIC of the
muscle forces was proposed. We successfully calculated AIC
and visualized the combinations of muscle links referring to
their AIC differences.

The limitation of this research is the shortage of par-
ticipants. In this paper, we’d like to introduce our new
method to analyze the similarities of muscle activate patterns,
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(b) The left-leg jump

(a) The right-leg jump
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Fig. 2. The visualized distance matrix between each pair of muscles. Each ID on the row/col in the Figure corresponds with the ID for each muscle
assigned in Tab. I. The darker color indicates that the shorter distance (the smaller AIC) between two muscles. (a) The upper side subfigure indicates the
distance matrix of the right leg muscle during the right leg DVJ. (b) The bottom side subfigure indicates the distance matrix of the left leg muscle during
the left leg DVJ. For both (a) and (b) subfigures, the left side figure is the result for the data during IC to MFK, the right side figure is the result for the
data during MFK to TO.

so we select only 1 participant and discussed the validity
of our method. For further research, we are planning to
analyze many more participants who have/do not have the
experiences of ACL injuries and compare the AIC distances
among those participants. Also, this method has the lim-
itation that muscles that have similar properties (i.e., the
response characteristics) tend to have similar AIC values
because the AR model estimates a kind of transfer function
of muscles. However, the duration of the DVJ motion we
analyzed were long enough and participants are expected
to realize their voluntary motion during IC to TO for the
preparation of the next jump, we think that our method can
also analyze taking into account of this voluntary motion.
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