
  


 

Abstract—Neural oscillating patterns, or time-frequency 

features, predicting voluntary motor intention, can be extracted 

from the local field potentials (LFPs) recorded from the sub-

thalamic nucleus (STN) or thalamus of human patients 

implanted with deep brain stimulation (DBS) electrodes for the 

treatment of movement disorders. This paper investigates the 

optimization of signal conditioning processes using deep 

learning to augment time-frequency feature extraction from 

LFP signals, with the aim of improving the performance of real-

time decoding of voluntary motor states. A brain-computer 

interface (BCI) pipeline capable of continuously classifying 

discrete pinch grip states from LFPs was designed in Pytorch, a 

deep learning framework. The pipeline was implemented offline 

on LFPs recorded from 5 different patients bilaterally implanted 

with DBS electrodes. Optimizing channel combination in 

different frequency bands and frequency domain feature 

extraction demonstrated improved classification accuracy of 

pinch grip detection and laterality of the pinch (either pinch of 

the left hand or pinch of the right hand). Overall, the optimized 

BCI pipeline achieved a maximal average classification accuracy 

of 79.67±10.02% when detecting all pinches and 67.06±10.14% 

when considering the laterality of the pinch. 

Clinical Relevance—The BCI architecture proposed in this 

article provides an optimizable and modular framework for the 

prediction of user intent based on deep brain LFPs which can be 

employed for the control of neuro-prostheses or for driving 

closed-loop DBS adaptable to different movement states. 

I. INTRODUCTION 

Local field potentials (LFPs) recorded from electrodes 

implanted for deep brain stimulation (DBS) have been 

proposed and successfully employed [1], [2] as modality of 

brain-computer interface (BCI). In particular, oscillatory 

activities in the beta (12-32Hz) and gamma (32-90Hz) 

frequency bands of LFP signals are time-locked to grip-force 

onset and scaling [3], [4]. It has also been shown that hand 

movement laterality (left or right) can be determined from  

analysis of LFPs in patients bilaterally implanted with DBS 

electrodes [1], [5]. DBS electrodes allow chronic recordings 

with a superior signal to noise ratio and larger signal 

bandwidth than non-invasive systems such as scalp Electro-

Encephalography (EEG). Furthermore, DBS surgery involves 

minimally invasive electrode implantation through a small 
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burr hole. Safety and efficacy are well established as DBS 

surgery has been a standard treatment for movement disorders 

for over 30 years [6]. Recordings from DBS electrodes thus 

leverage a wealth of clinical experience. Other forms of 

invasive BCI such as microelectrode arrays struggle to afford 

long-term recordings and electrocorticographic grids require 

craniotomy. DBS-BCI systems are arguably more likely to be 

translated into real-world applications in the near term. With 

decoding, DBS can adapt to different movement states, which 

has been shown to be beneficial for the treatment of essential 

tremor [7]. Although progress has been made towards 

implementing a DBS-BCI system [2], real-time convergence 

and reliable signal decoding remain challenges to be 

addressed. Reliable time-frequency feature extraction from 

LFP signals has proven to be difficult due to the noisy and 

latent bursting structure of the signals. Important inter-trial 

and inter-subject variance also make it difficult to create 

generalizable models. To address these gaps, we have 

implemented a fully optimized BCI architecture, using 

Pytorch [8], a deep learning framework which can compute 

gradients in complex computational graphs thanks to its 

automatic differentiation algorithm for parameter 

optimization. In this investigation, we present an optimizable-

feature extractor based on the time-dependent Fourier 

transform combined with a Wiener filter model and softmax 

classifier, capable of continuously decoding motion 

intentions from LFPs in single trials. We demonstrate that 

systematically optimizing channel combinations for features 

in different frequency bands and optimizing frequency 

domain feature extraction can help to improve the accuracy of 

decoding based on STN LFPs. 

II. METHOD AND MATERIALS 

A. Data Recording and pre-Processing 

Invasive recordings were undertaken with Parkinson’s 

disease patients (Tab. I) 3-6 days after the first surgery for 

bilateral sub thalamic nucleus (STN) DBS electrode 

implantation and prior to the second surgery for connecting 

the electrodes to the subcutaneous pulse generator. During the 

recording, the participants were asked to pinch a force load 

cell at different force levels with either the left or right hand 
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in response to a Go cue, similar to the task used by [5]. Mono-

polar STN LFPs from individual electrode contacts and pinch 

forces were recorded using a TMSi Porti amplifier (TMS 

International, Netherlands) with a sampling rate of 2048 Hz. 

In total, five patients with obvious movement related beta 

reduction observed in STN LFPs were included in this study. 

The raw LFP signals were preprocessed as follows: first, 

bipolar channels between adjacent electrode contacts were 

constructed (the number of resultant bipolar channels for all 

recorded hemispheres are listed in Tab. I); then all bipolar 

LFP time series were low pass filtered at 128Hz and down-

sampled to 256Hz; finally, activities in the following 

frequency bands, 𝜃 (1-8Hz), 𝛼 (8-12Hz), 𝛽1 (12-20Hz), 

𝛽2 (20-32Hz), 𝛾1 (32-50Hz), 𝛾2 (50-100Hz) and 𝛾3 (100-

128Hz), were isolated from the signals using a bank of fifth 

order Chebyshev type II filters (using the Scipy library [9]). 

Infinite impulse response (IIR) filters offered the minimal 

real-time latency necessary for real time application. The 

Chebyshev type was used because of its sharp cutoff rate and 

flat passband response. The ringing gain in the stopband was 

set to be below -60dB. The partition of the gamma-range of 

the spectrum was designed to exclude the main noise 

pollution peaks located at 50Hz and 100Hz. To mitigate the 

effects of targeting variance and artefacts, the filtered 

amplitude of each frequency band was normalized using z-

transformation (mean subtracted and then divided by 3 times 

standard deviation) and were capped to ±1. Data labels were 

generated from the load-cell time series. Pinch grips were 

automatically detected using thresholding and then manually 

corrected (Fig. 1). Class 0 was assigned to rest, class 1 to left 

pinch and class 2 to right pinch for each time point 𝑛 and 

stored in a target vector 𝑢[𝑛]. When laterality was not needed, 

class 2 and class 1 were combined into a single class. 

B. Model Architecture 

The BCI pipeline is constructed using a sequence of custom 

modules (Fig. 2) assembled from the Pytorch library [10]. 

a) Optimizing Channel Combination  

The pipeline input is defined as a multi-dimensional array 

𝑥0[𝑛, 𝑏𝑑, ℎ, 𝑐𝑝] , where 𝑛  is the time index, 𝑏𝑑  is the 

frequency band index, ℎ the electrode (in either the right or 

left-brain hemisphere) and 𝑐𝑝  an electrode contact-pair (or 

channel). Parallel linear transformations are first applied to 

derive an optimal combination of different available bipolar 

contact pairs for the estimation of activities in different 

frequency bands for each electrode: 

𝑥1[𝑛, 𝑏𝑑, ℎ] =  ∑ 𝑊0[𝑏𝑑, ℎ, 𝑐𝑝]

𝑁𝑐𝑝−1

𝑐𝑝 = 0

𝑥0 (1) 

where 𝑥1 is the reduced array and 𝑁𝑐𝑝the number of contact 

pairs in each electrode. The stacked transformation array 𝑊0 

combines all available channels of a given electrode and a 

given frequency band into a single band component per 

hemisphere. Each transformation is initiated using the first 

principal component of this space, and further optimized 

using gradient backpropagation to perform channel selection 

based on the classification error (5). This method allows for 

different contact pairs from the same electrode to be selected 

for different frequency bands (Fig. 6A). For example, more 

ventral contact pairs may be attributed to the theta band while 

more dorsal contact pairs, to the beta band. 

b) Optimizing Time-Frequency Feature Extraction 

The BCI output update rate was set to 8Hz and the Fourier 

transform was applied to each new epoch of data from the 

buffer, with the data length of 𝑅 = 256/8 = 32  with no 

overlap in the data epochs. The windowed signal is then 

convolved with the Fourier Kernel and 𝑁𝑡  tapers (2) in 

parallel. Multitaper spectral estimation is commonly 

employed in EEG processing, especially for single trial 

analysis. The method helps to increase the signal-to-noise 

ratio and has previously been successfully applied to LFP 

based BCIs [11]. The time-frequency feature array 𝑥2  is 

obtained by taking the natural log of the mean (2b) of the 

resulting complex norm of each taper convolution 𝑋 (2a): 

𝑋 = 
1

𝑅
∑ 𝑊1[𝑚, 𝑏𝑑, 𝑡]𝑥1[𝑅𝑛 + 𝑚,… ]𝑒−𝑗2𝜋𝑚𝜔[𝑏𝑑] + 𝑏1[𝑏𝑑, 𝑡]

𝑅−1

𝑚=0

 (2a) 

𝑥2[𝑟, 𝑏𝑑, ℎ ] =  𝑙𝑜𝑔(
1

𝑁𝑡

 ∑ |𝑋|

Nt−1

𝑡=0

) (2b) 

where 𝑟 = (𝑅𝑛) is the down-sampled output time index, ω 

the normalized mid-frequency of each frequency band, 𝑊1 

the stacked taper array, 𝑡 the taper index, 𝑁𝑡 the total number 

of tapers and 𝑏1 a complex bias. 𝑊1 is initialized in each band 

individually to maximize the band energy content using the 

discrete-prolate-spheroidal sequence (DPSS) [12]. Five tapers 

were used per band. 𝑊1  and 𝑏1  were further optimized 

through gradient descent to improve the time-frequency 

feature extraction, again based on the classification error (5). 

Meanwhile, to ease backpropagation and further balance 

high-frequency with lower frequency content, time-frequency 

features were normalized using the temporal mean 𝜇𝑠  and 

TABLE I.  DATASET DESCRIPTION 
 Side Sub1 Sub2 Sub3 Sub4 Sub5 

Number of 

Contact pairs  

Left 7 3 3 3 7 

Right 7 3 3 3 7 

Number of 

Pinch grips 

Left 23 10 11 19 17 

Right 25 11 13 21 12 

 
Figure 1.  Example of a training segment labelled for pinch detection 

 
Figure 2.  Data flow and decoder architecture 
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standard deviation 𝜎𝑠  of a training segment 𝑠  of length 𝑁𝑟 

during model fitting: 

𝑥3[𝑟, 𝑏𝑑, ℎ ] =
𝑥2 − 𝜇𝑠(𝑥2[0,… ], … , 𝑥2[𝑁𝑟 − 1,… ], 𝜇𝑠−1)

𝜎𝑠(𝑥2[0,… ],… , 𝑥2[𝑁𝑟 − 1,… ], 𝜎𝑠−1)
   (3) 

Temporal statistical estimates are updated between segments 

using an exponential moving average scheme. 

c) Neuro-Dynamical Model 

After extraction, a Wiener filter length  𝐿𝑊  (accounting for 

measurements of 𝐿𝑊 previous time stamps) was designed to 

capture slower temporal behavior of the feature map recorded 

from both hemispheres to estimate the pinch state 𝑐: 

𝑥4[𝑟, 𝑐] =  ∑ ∑ ∑ 𝑊3[𝑚, 𝑏𝑑, ℎ, 𝑐]𝑥3[𝑟 − 𝑚,… ] + 𝑏3[𝑐]

ℎ𝜖{0,1}

𝑁𝑏𝑑−1

𝑏𝑑=0

𝐿𝑊−1

𝑚=0

 (4) 

where 𝑁𝑏𝑑 is the total number of frequency bands, 𝑏3 is the 

class bias and W3 the parameterized filter kernel. The average 

pinch force holding duration in the data set was 2.75± 0.76s. 

Here 𝐿𝑊 was set to 30 meaning a filter length of 3.75s, large 

enough to cover the neural dynamics during most of the pinch 

holding. The filter output array, 𝑥4, is then fed to the softmax 

classifier to produce the model output 𝑦[𝑟, 𝑐]. 

C. Model Training and Evaluation 

A 10-fold cross-validation was used to evaluate movement 

decoding accuracy. During model training, a single global 

classification loss for the entire model was estimated using 

Pytorch cross entropy criterion NLLLoss [10] on a segment 

of length 𝑁𝑟. The overall cost function 𝐿 equated to: 

𝐿 =
1

𝑁𝑟

∑ 𝑁𝐿𝐿𝐿𝑜𝑠𝑠(𝑦[𝑟, 𝑐], 𝑢[𝑟]) +  2𝑅𝐿2(𝑊0,𝑊1, 𝑏1,𝑊3, 𝑏3)

𝑁𝑟−1

𝑟=0

 (5) 

where  2 is the regularization constant. To prevent overfitting 

L2 norm regularization was implemented on all parameters. 

The cost function was minimized using an RMSprop 

optimizer [10]. The hyper-parameter ( 𝜆2  and the initial 

learning rates of the RMSprop optimizer for each parameter 

group) tuning was completed with the help of Bayesian 

optimization [13] of the model accuracy evaluated by the 

means of a 10-fold cross-validation. 

III. RESULTS 

A. Classification Accuracy and Optimization 

The model training and cross-validation procedure was 

repeated four times: firstly, with no feature optimization 

whatsoever, secondly with the optimization of tapers (𝑊1 , 

𝑏1 ), thirdly with the optimization of channels (𝑊0 ) and 

fourthly with the optimization of both channels and tapers 

(𝑊0,𝑊1, 𝑏1). This procedure was repeated with and without 

decoding the laterality of the grip. The mean cross validation 

accuracy is presented in Fig. 3 for each subject and 

optimization procedure. For simple pinch grip detection, fully 

optimized models achieved the best performance with an 

average accuracy of 79.67±10.02%. Channel optimization 

provided an average relative accuracy gain of 29.14%, taper 

optimization a gain of 24.54% and both optimizations, a gain 

of 31.82%. All gains were confirmed by a one-tailed paired  

related t-test with 0.95 confidence interval [9]. 

Notwithstanding the small sample size and model fitting 

dependencies on hyper-parameter tuning, these gains were  
 

 

 
Figure 3.  Model performance summary for every subject and 

optmization method (with 95% confidence interval); A. for simple 

pinch detection with binary classifier B. for bilateral pinch detection 

with 3-class classifier 

 

Figure 4.  A. Receiver operating characteristig (ROC) for binary 

pinch decoding (all pinch combined, or left or right pinch only) against 

rest; B. bilateral confusion matrix; all are fully optimized models 
averaged across fold and subject (within one standard deviation)  

 
Figure 5.  Wierner kernel weights in bilateral detection in fully 

optimized models averaged across folds and subjects 

 

Figure 6.  A. Example of optimized channel transformation (in terms 
weight contribution, 5 top weights marked) for Sub2 left hemisphere; 

B. Example of taper optimization in 𝛾1 of Sub2, deviations from the 

orginal taper are small but still affected its frequency response. 

 

A. 
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observed across all the test subjects. Cross-fold variance 

remained systematically high (about ±6.44 accuracy points on 

average) suggesting that the model still had generally some 

difficulties coping with high inter-trial variance. Furthermore, 

as expected, with 3 classes in total (rest vs left pinch vs right 

pinch) for the classifier, pinch laterality detection performed 

worse with 67.06±10.14% maximum accuracy, a drop of 

12.61 points compared to the binary classifier (Fig. 3B). The 

ROC curve shows that with both channel selection and feature 

extraction optimization, the AUC for binary pinch decoding 

reached 0.92±0.03, 0.86±0.08, 0.87±0.06 for all pinches, left 

pinches and right pinches, respectively (Fig. 4A). When three 

classes are considered for decoding, the accurate decoding 

rate is 0.81, 0.67 and 0.63 for resting, left pinched and right 

pinches, respectively (Fig. 4B). There is generally more 

chance for the classifier to confuse the rest state with either 

left or right pinch due to increased uncertainty especially 

around pinch onset and relaxation. However, our results 

suggest that detecting laterality is still possible with a purely 

forward and linear model using STN LFPs. Overall, channel 

and taper optimization helped to improve the global 

performance of the classifiers with relative gains of 28.01%, 

33.72% and 34.74% for the three optimization augmentations 

respectively. 

B. Features Important to Decoding   

Fig. 5 shows optimized coefficients attributed to different 

features for decoding laterality (rest vs. left pinch vs right 

pinch) when averaged across all test subjects and across all 

cross-validation folds. As expected, desynchronization of 

beta band activity (most notably in 𝛽1) in the contralateral 

STN, with positive coefficients for more distant time points 

and negative coefficients for more recent time points, 

contributed most to the decoding of the contralateral pinch. 

This pattern tended to be reversed for 𝛾1 and 𝛾2 as activities 

in these bands tended to increase during pinching. Moreover, 

pronounced activity synchronization also was observed in 

ipsilateral 𝛽2 . Such asymmetric activity changes between 

hemispheres made it possible to detected movement laterality. 

C. Taper and Channel Optimization 

The difference in the decoding accuracy seems to indicate that 

the taper optimization had a positive impact on modelling and 

decoding. The optimization appears to better sharpen the 

Wiener kernel, leading to better selection and conditioning in 

each signal band. Nonetheless, being a high dimensional 

space, the taper array was more prone to model over-fitting, 

thus challenging to well regularize and optimize. Although, 

some tapers successfully adapted their shape and main-lobe, 

it is possible for them to lose some of their frequency selective 

ability and consequently to be more prone to absorb noisy 

content and residuals of the IIR filters present in the stopbands 

(Fig. 6B). During optimization, the taper shape is also very 

sensitive to the learning rate initiation. It can depart very 

quickly from the initial DPSS solution under too large weight 

updates, which results in poorer generalization across the 

fold. In comparison, channel source selection at the band level 

proved to be a more cost-effective and simpler approach in 

improving the performance of the classifier (Fig. 6A).  

IV. DISCUSSION AND CONCLUSIVE REMARKS 

LFP based BCI applications remain limited due to issues in 

continuous decoding in real-time [2] and consistent detection 

of movement laterality [1]. The algorithm introduced in this 

investigation contributes to research addressing both. Results 

demonstrate that modern deep-learning concepts can be 

advantageously introduced into a BCI pipeline. The current 

architecture is sufficiently operational when trained on a 

small amount of LFP segments and is ready to be deployed 

online with a user in the loop. With automated gradient 

computation, the model can easily be updated during training, 

so as to help the user gain progressively more control over the 

system as a result of neuro-feedback. As taper and channel 

optimization achieved comparable results and no statistically 

significant cumulated gain, it is possible that both methods 

acted on common latent-properties of the feature space. A 

redefinition of those transformations might be necessary. Pre-

training of the feature extractor should also allow for a more 

efficient usage of data. Tapers could be fitted on the overall 

population dataset so to capture the broader essence of LFP 

signals and be later deployed in individual models. Stabilizing 

lateral end-effector selection is too challenging with a forward 

linear model. Recurrent neural networks may therefore be a 

logical next step to render more robust state transitions. 
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