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Abstract— This paper proposes the fusion of data from 

unobtrusive sensing solutions for the recognition and 

classification of activities in home environments.  The ability to 

recognize and classify activities can help in the objective 

monitoring of health and wellness trends in ageing adults. While 

the use of video and stereo cameras for monitoring activities 

provides an adequate insight, the privacy of users is not fully 

protected (i.e., users can easily be recognized from the images). 

Another concern is that widely used wearable sensors, such as 

accelerometers, have some disadvantages, such as limited 

battery life, adoption issues and wearability. This study 

investigates the use of low-cost thermal sensing solutions capable 

of generating distinct thermal blobs with timestamps to 

recognize the activities of study participants. More than 11,000 

thermal blobs were recorded from 10 healthy participants with 

two thermal sensors placed in a laboratory kitchen: (i) one 

mounted on the ceiling, and (ii) the other positioned on a mini 

tripod stand in the corner of the room. Furthermore, data from 

the ceiling thermal sensor were fused with data gleaned from the 

lateral thermal sensor. Contact sensors were used at each stage 

as the gold standard for timestamp approximation during data 

acquisition, which allowed the attainment of: (i) the time at 

which each activity took place, (ii) the type of activity performed, 

and (iii) the location of each participant. Experimental results 

demonstrated successful cluster-based activity recognition and 

classification with an average regression co-efficient of 0.95 for 

tested clusters and features. Also, an average accuracy of 95% 

was obtained for data mining models such as k-nearest neighbor, 

logistic regression, neural network and random forest on 

Evaluation Test. 

Clinical Relevance—This study presents an unobtrusive (i.e., 

privacy-friendly) solution for activity recognition and 

classification, for the purposes of profiling trends in health and 

wellbeing. 

I. INTRODUCTION 

Recognizing individual activities of people susceptible to 
hazardous behaviors has been an active research topic, which 
has witnessed the use of pervasive and non-pervasive sensing 
solutions. This has also involved data gathering from 
laboratories, smart homes, and other home environments [1]. 
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Interestingly, many cases of hazardous behaviors in ageing 
adults can be prevented [2] [3]. While there are several 
monitoring devices that can detect these behaviors when they 
occur, it would be of great benefit if they can be predicted prior 
to their occurrences. One way this can be achieved is with the 
use of machine learning models, which can help discover 
patterns and potential deviations from established patterns. 

 Pattern Deviations Assessment (PDA) in activity 

recognition is a vital tool in detecting abnormal activities. Its 

outcome helps to determine if an ageing individual can be 

independent or not whilst performing certain activities [4]. 

Furthermore, activity monitoring through PDA can help 

determine the extent of recovery from injury, potential 

hazardous behavior and an individual’s effectiveness. Pattern 

deviation can take several forms including detection of 

incomplete activities: sudden change in activity, disposition 

and posture. 

 Presently, Activity Recognition and Classification (ARC) 

in a home environment has featured many sensing solutions 

ranging from wearable to non-wearable. These solutions are 

often used to acquire data to be used in different areas, which 

include prediction of prevalence, and management of 

individuals with diseases such as dementia, osteoporosis, and 

increased fragility. They also help to detect hazardous 

incidents [5].  

 Nevertheless, data acquisition in a home setting can be 

negatively influenced by gadgets that can interfere with signal 

propagation from different sensing solutions. Whilst the many 

advantages of using a video camera for home monitoring 

solutions cannot be understated, lack of privacy protection, 

and changes in lighting conditions are the main concerns for 

its use.  

 The main contribution of this paper is to address five 

principal concerns in ARC: (i) wearability, (ii) privacy, (iii) 

actual recognition of activities, (iv) classification of activities 

from single to multiple users, and (v) data acquisition in a 

home environment. Hence, this study presents unobtrusive 

(i.e., privacy-friendly) sensing solutions for indoor activity 
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recognition and classification in a home environment using 

data mining and fusion algorithms. 

   The remainder of this paper is organized as follows: Section 

II discusses related work; Section III examines the 

methodology and experiments performed; Section IV 

presents the data analysis and discussion; Section V presents 

the limitation of the study; Section VI presents conclusion and 

future work. 

II. RELATED WORK 

 Many sensing solutions have been deployed over the years 

for activity recognition [5] [6] [7]. These have included the 

use of wearable or non-wearable solutions, or the fusion of 

both. In [8], it was proposed to use a hidden Markov model to 

recognize human activities based on data gleaned from a 

waist-worn accelerometer. The model also classified 

collected signals according to a corresponding class. 

Continuous monitoring was performed by a Gaussian mixture 

model. A further study by Ni et al. [9] used a multivariate 

online change detection algorithm for activity recognition. 

 The use of accelerometers for activity recognition has been 

featured in many studies [8] [10] [11]. In [12], the use of tri-

axial accelerometers was examined for monitoring ageing 

adults. Using binary trees, activities were classified into rest, 

movement, transition and emergency states. Although the 

successful detections of the activities were recorded, further 

improvements were required for successful recognition, 

distinction and classification of certain activities. In [13], a 

triaxial accelerometer was used to monitor daily physical 

activity. In addition to the challenges of the approach 

presented in [12], wearability was an issue in the latter study. 

Another multi-wearable sensor study was carried out by Gao 

et al. [10]. Whilst a garment-based accelerometer might 

exhibit an improved performance in a laboratory environment 

(as illustrated by [10]), real life usage may suffer the risks of 

explosion or damage to the sensors during washing activity. 

Also, long term usage may be a cause of discomfort for the 

user. 

 Mobile device-based ARC has also been researched in 

recent times. Figo et al. [14] explored the use of a 

smartphone’s accelerometer to recognize and classify 

activities such as running and walking during a certain period 

of the day. The study incorporated information from the GPS 

sensor to suggest to the user routines similar to those 

performed in previous days. The work presented by [15] 

suggested that mobile devices should be optimized to enhance 

continuous monitoring and processing of data acquired from 

their sensors. Whilst these suggestions seem innovative and 

worthy of exploration, battery life, and users’ ability to 

remember to carry mobile devices around are major setbacks. 

 Furthermore, in Konios et al. [6], a probabilistic 

examination of temporal and sequential aspects of activities 

using an approach based on the cumulative distribution 

function is employed to determine abnormalities in activities. 

This approach involved deriving probabilities of abnormal 

behaviors with respect to the duration and the stages of an 

activity. Whilst this study introduced an effective way to 

detect (ab)normal activities, a profile analysis of users aimed 

at ensuring more precision in detecting the presence of health-

related abnormalities is still being researched. 

 Data fusion from homogeneous and heterogenous sensors 

has also been deployed in ARC. Garcia-Constantino et al. 

[16] investigated the fusion of data from wearable 

(accelerometer) and ambient (thermal) sensors by extracting 

relevant features from both. Initial results from this approach 

indicated an improvement in recognizing the main steps 

associated with activities. 

 Machine learning models have positively influenced ARC. 

These have included successful recognition and classification 

of data obtained from controlled trials in ARC. Whilst many 

monitoring models can exhibit excellent performance in a 

controlled environment such as laboratories [9], others can 

only be moderated by trained personnel [17]. This often 

results in successful laboratory work which cannot be 

deployed in a real-life setting. Unlike some of the existing 

technologies and models in ARC, this study addresses some 

of the concerns associated with wearability, privacy of users, 

actual recognition of activities in a home environment, and 

classification of some activities from single to multiple users. 

III. METHODOLOGY AND EXPERIMENTS 

The present work uses two infrared thermopile array 
sensors to monitor and recognize activities in a laboratory 
kitchen, which is similar to a home kitchen. The two thermal 
sensors are used simultaneously to address instances of 
missing thermal blobs due to occlusion. Data mining tools and 
algorithms are used to extract features and to fuse data from 
both sensors. Contact sensors are used as the baseline to 
compare the timestamps of both types of sensors. 

The study was carried out at a laboratory kitchen (Fig. 1), 
which measures 3.9m by 3.4m. 10 healthy participants took 
part in the study and each of them participated in a single 
experiment. Prior to the study, the participants were briefed on 
the activities and their consents were obtained. Moreover, in 
order to have a more realistic scenario, they were allowed to 
take as long as they wished to complete the activities. There 
were no time constraints or control on the duration of the 
activities undertaken. 

 
Figure 1. Pictorial View of the laboratory kitchen used for the study. Detailed 
description of the kitchen layout is presented in Figure 2. 

 

The laboratory kitchen is comprised of cupboards (labelled 1 

– 4 in Fig. 2) where tea, coffee, cups and sugar were stored. 

Underneath the cupboards is a worktop with a microwave, a 



  

kettle and a sink over it, thus mimicking a real-life kitchen. A 

refrigerator is located on the floor beneath the worktop, as 

indicated in Fig. 2. The main kitchen area is where 

participants walked around to prepare a hot beverage (either 

tea or coffee) which was then taken to the table area for 

consumption. 

 
Figure 2. Laboratory Kitchen Layout. The areas marked in red indicate the 

location of the contact sensors. Thermal sensors are indicated by the navy-
blue oval shape as T1 and T2 for lateral and ceiling thermal sensors, 

respectively. The indicative coverages of T1 and T2 are also indicated. 

 

 During data acquisition, each participant (at a time) walked 

in through door D1 to the main kitchen area where the cups 

were located. While some participants preferred to boil water 

in the kettle before going for the cups, others did the opposite. 

Data acquisition began a few seconds prior to opening door 

D1 notwithstanding the activity preferences of the 

participants. 

 Moreover, data from T1 and T2 were collated using a 

bespoke time series database referred to as SensorCentral 

[18] [19] [20]. A total of 11,980 frame data (1,198 from each 

participant) were gleaned from the database per second from 

the 10 experiments. The contact sensors, which were also 

associated with the database, were able to record the times 

when each activity began and ended.  

IV. DATA ANALYSIS AND DISCUSSION  

Prior to sensor data fusion, data obtained from the database 
were situated in two folders, each representing sensors T1 and 
T2. Thermal blobs from T1 clearly have the ability to identify 
and distinguish between activities such as using a bottle of 
milk from using a kettle of hot water (Fig. 3). While a bottle 
of milk was seen as monochromatic shades of black due to its 
low temperature, a kettle of hot water had shades of white 
representation due to its high temperature as presented in Fig. 
3. Moreover, it is important to note that notwithstanding the 

closeness of the participants to the thermal sensor (Fig. 3), 
their identities were still protected. 

Figure 3. Thermal blobs of a bottle cold milk (shades of black) distinguishable 
from a hot kettle (shades of white). 

 
Furthermore, after preparing a cup of tea, it was easier to 

know from the thermal blobs whether the user successfully 
reached the table. Also, it was necessary to know where the 
participant placed the hot kettle (after using it) which is a 
potential hazardous object. As presented in Fig. 4, these 
activities were clearly viewed on the thermal image. Whilst the 
hot kettle was represented as a large blob adjacent to the 
participant, the tea/coffee cup was viewed as a small bright 
spot in what could be viewed as the hand of the user (Fig. 4). 

Figure 4. Distinguishable thermal blobs of hot kettle, position of participant 
and tea/coffee cup after the initial act of tea/coffee making. 

 
At some instances, the heat spot of a cup or kettle may be 

occluded by a participant when it is viewed from the lateral 
thermal sensor. When this happens, an abnormal behavior or 
an activity may go unnoticed. To address these concerns, the 
ceiling sensor (T2) is referred to for an aerial view as presented 
in Fig. 5. Hence, the essence and usefulness of dual sensing in 
this study.   

 
Figure 5. Heat Spots from tea/coffee cups occluded from the lateral thermal 
sensor (T1) but indicated by the ceiling thermal sensor (T2). The black arrow 
on thermal_242 points to the location of T1; the white arrow points to the heat 
spot and the red arrow points to the hand of the participant (occluding the heat 
spot). 



  

A. Fusion of Thermal Blobs from Participants 

Sensor fusion using data mining tools helps to merge data, 
and to extract and cluster features from both sensors. A block 
diagram of the sensor data fusion algorithm employed in this 
study is presented in Fig. 6 [21].  

Figure 6. Sensor Data Fusion Architecture for lateral (T1) and ceiling (T2) 

thermal sensors. 
During sensor fusion, data from T1 and T2 were fed into 

the data merging system. The system then created an 
imaginary table for the two sets of data before carrying out a 
matching row appendation. This was then followed by data 
embedding using the SqueezeNet architecture [21], a deep 
neural network model for image recognition. 

Unlike many sensor fusion or classification architectures 
that manually allocate clusters to images, the Louvain 
clustering algorithm [21] was used alongside distance metrics 
to automatically detect clusters. One of the advantages of using 
Louvain clustering is that of determining the number of 
clusters detected. The clusters were largely affected by 
resolution and Principal Component Analysis (PCA) 
parameters. In essence, increasing any of these parameters 
resulted in a corresponding decrease in the number of clusters 
that the algorithm detected. To be able to select and manipulate 
clusters, a separate Hierarchical Clustering Algorithm (HCA) 
was used. Data fusion outputs were viewed using a scatterplot, 
data table and data viewer widget. 

Using this sensor data fusion architecture, a cluster 
comprising of all similar activities can be viewed as presented 
in Fig. 7 even if the activity was performed at different times 
by different participants. In Fig. 7, for example, it could be 
easily deduced that a participant code-named c_ID was at the 
kitchen table with a hot cup of tea/coffee on the 8th of May, 
2019 at a different time and date as another participant code-
named c_OR. With this information, activities can be easily 
monitored in clusters notwithstanding the times and dates they 
were performed. 

 
Figure 7. A cluster of data fusion output showing thermal blobs from two 
participants in a cluster with timestamps. The black arrow on 
‘C_ID_080519_11.58\thermal_212.png’ points to the location of the lateral 
sensor; the red arrow points to the participant and the white arrow points to the 
heat spot from tea/coffee cup. 

 

Furthermore, it is important to note that up to 1,000 features 
(labelled n0 to n999) were extracted from each thermal image 
during the feature extraction process. Using these features, a 
PCA and scoring of the clusters performed between features 
n525 and n830 at 99% variance coverage indicated a 
regression co-efficient (r) of 0.98 and 1.00 for clusters 2 and 
12,  respectively as presented in Fig. 8.  
 

 
Figure 8. Features-based Principal Component Analysis and Scoring of 
Clusters. Features n525 and n830 are indicated on the X and Y axes, 
respectively. The clusters are color-coded, and the color of each regression line 
on the graph matches the color on the cluster legend on the right. 
 

Similarly, a PCA and scoring analysis performed between 
features n246 and n170 for clusters 1, 6 and 9 yielded 0.83, 
0.99 and 1.00 as presented in Fig. 9. These resulted in an 
average (r) of 0.95 for all the tested features and clusters which 
were randomly selected from the HCA interface. 
 

 
Figure 9. Features-based Principal Component Analysis and Scoring of 
Clusters. Features n170 and n246 are indicated on the X and Y axes, 
respectively. Also, the clusters are color-coded and the color of each regression 
line on the graph matches the color on the cluster legend on the right. 
 

To further ascertain the certainty of the predicted clusters, 
an Evaluation Test was performed on all the clusters in the 
HCA using K-Near Neighbors (KNN), Logistic Regression 
(LR), Neural Network (NN) and Random Forest (RF) models. 
While KNN yielded the least Classification Accuracy (CA) of 
0.85, LR and NN gave CAs of 0.961 and 1.00 respectively as 
presented in Table 1. Also, the proportion of true positives of 
the positively classified instances (Precision) [21] followed a 
similar trend as the CA. In addition, the NN yielded a value of 
1.00 for Area Under the Curve (AUC), weighted average (F1), 
CA, Precision, Recall and Specificity followed by RF with an 
average of 0.99 as presented in Table 1. 
 
 



  

 
LogLoss, also referred to as Cross entropy loss, accounts for 

the performance of the classification model with respect to its 
variation from the actual label [21], and was relatively low 
(less than 0.4) for all the models (Table 1). NN had the least 
value of 0.001. 

With an average regression co-efficient of 0.95 in the PCA 
and scoring test and 95% accuracy for CA, AUC, F1, 
Precision, Recall and Specificity in the Evaluation Test, the 
predictive accuracy of this novel fusion architecture is well 
demonstrated.  

V. LIMITATION OF THE STUDY 

One of the limitations of this study is that the thermal 

sensors leveraged on the contact sensors to determine if an 

occupant drank tea or coffee during the experiments since 

both (tea and coffee) were placed in the same locker. This 

implies that depending on the data from the thermal sensors 

alone, it would be difficult to determine if an occupant had tea 

or coffee. In a real-life setting, however, this confusion can be 

resolved if tea and coffee are placed on separate lockers that 

are more than 1m apart. 

Another challenge with using the thermal sensors only 

without the contact sensors is on determining if the occupant 

used milk or cold water if both are placed in a similar 

container. To address this limitation in a real-life application, 

milk and cold water should be placed in containers of different 

sizes so that their blobs could be easily differentiated. 

VI. CONCLUSION AND FUTURE WORK 

This paper presented the use of low-cost unobtrusive 

(privacy-friendly) sensing solutions for indoor ARC in a 

laboratory kitchen environment similar to a home 

environment. Experimental results indicated instances of 

activity recognition during activities such as making a cup of 

tea/coffee and classification of the same activities using data 

mining tools with an average predictive accuracy of 95%. 

Future work will calculate the speed and range of these 

activities including the use of data mining tools to score and 

evaluate their performance. 
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