
Blood Pressure Prediction by a Smartphone Sensor
using Fully Convolutional Networks

Sanghyun Baek1,2 Jiyong Jang1,3 Sung-Hwan Cho2 Jong Min Choi2 and Sungroh Yoon1

Abstract— Heart disease and stroke are the leading causes
of death worldwide. High blood pressure greatly increases the
risk of heart disease and stroke. Therefore, it is important to
control blood pressure (BP) through regular BP monitoring;
as such, it is necessary to develop a method to accurately and
conveniently predict BP in a variety of settings. In this paper, we
propose a method for predicting BP without feature extraction
using fully convolutional neural networks (CNNs). We measured
single multi-wave photoplethysmography (PPG) signals using a
smartphone. To find an effective wavelength of PPG signals for
the generation of accurate BP measurements, we investigated
the BP prediction performance by changing the combinations of
the input PPG signals. Our CNN-based BP predictor yielded the
best performance metrics when a green PPG time signal was
used in combination with an instantaneous frequency signal.
This combination had an overall mean absolute error (MAE) of
5.28 and 4.92 mmHg for systolic and diastolic BP, respectively.
Thus, our CNN-based approach achieved comparable results
to other approaches that use a single PPG signal.

I. INTRODUCTION

High blood pressure, clinically referred to as hypertension,
is known as a “silent killer” due to its inconspicuous
symptoms and potentially life-threatening complications. It
is therefore important for individuals to control their blood
pressure (BP) through regular BP measurements. However,
BP may increase or decrease temporarily depending on an
individual’s situation, such as their location and the time of
day when BP is measured. “Masked hypertension” occurs
when the individual’s BP is actually high but is measured
as normal in a doctor’s office. This phenomenon is present
in approximately 10% of normal adults and may cause more
damage to the heart or other organs than clinically detected
normal, thus requiring more thorough BP control [1].
Conversely, “white coat hypertension” occurs when the
patient is nervous when seeing a doctor and therefore their
BP increases despite their actual BP being normal. This
phenomenon is reported to occur in approximately 15%
of the general population and in approximately one-third
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of patients diagnosed with hypertension [2]. Medication
should be given to patients with white coat hypertension who
also have damage to organs such as the heart, brain, and
kidneys and those who are at high risk for cardiovascular
disease. Therefore, in order to make an accurate diagnosis,
it is important to self-measure BP periodically in a relaxed
state in addition to regularly having BP measurements
performed by a medical professional in a clinical setting.
Periodic self-measurement of BP is highly reproducible and
provides clinically important information in the diagnosis
and treatment of hypertension, which is very useful for
long-term BP management. Furthermore, self-measurement
is beneficial for the evaluation of BP changes over time,
and reduces the inconvenience and cost of regular visits to
medical institutions for monitoring.

Despite the many advantages of self-measurement of BP,
the conventional commercially available autonomous BP
measuring devices are difficult to carry and use outside
the home, and are challenging to use during walking.
Therefore, it is necessary to develop a method for accurate,
comfortable and convenient BP self-measurement that can
be used in a variety of settings. Recently, various studies
have been conducted regarding the prediction of BP through
single photoplethysmography (PPG) signals measured by
one PPG sensor [3]–[7]. In addition, multi-wavelength PPG
detection technology has been shown to be superior to single-
wavelength PPG, and it has been considered a powerful
method for measuring PPG signals [8]. It has also been
noted that PPG sensing light sources of different wavelengths
are recommended for different skin tones [9]. Previous
studies on BP prediction using PPG signals generally
consist of feature extraction followed by machine learning
or regression-based prediction. A variety of combinations
of PPG signal features, including time-domain, frequency-
domain, and entropy-based features, among others, have been
used to date as key features for BP prediction. Recently,
in BP prediction research using electrocardiography (ECG)
in conjunction with PPG signals, an end-to-end approach
with self-generated features using deep-learning technology
has been used [10], [11]. In this paper, we propose
a method for predicting BP without feature extraction
using only PPG signals measured by smartphone using
the convolutional neural networks (CNN) model proposed
in the previous study [11]. Instead of using additional
physiological cardiovascular signals, multiple wavelengths of
PPG (infrared, red, green, blue) signals were measured using
the smartphone’s heart rate monitor sensor and analyzed
to determine the optimal combination of PPG signals for
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Fig. 1. Overview of the BP prediction methodology.

predicting systolic BP (SBP) and diastolic BP (DBP). The
main contributions of our work are summarized as follows:

• We proposed a novel end-to-end method of predicting
BP using only a single PPG signal without manual
feature extraction

• We optimized BP prediction performance by testing
various combinations of PPG signal wavelengths to
maximize prediction accuracy

• Our CNN-based approach achieved comparable results
to other approaches that require a single PPG signal

II. METHOD

The BP prediction process involved acquiring multiple
wavelengths of PPG signals from a smartphone, PPG
signal preprocessing, data preparation, and BP predictions
using a CNN-based prediction model. A schematic of the
methodology is depicted in Fig. 1.

A. Data Acquisition

PPG data were acquired using the heart rate sensor
of the Samsung Galaxy Note8 smartphone. The sampling
frequency was 100 Hz and four multi-wavelength PPG
signals were used: infrared (IR), red (R), green (G), and
blue (B). The data was collected from 26 volunteers. In
all experiments, informed consent was obtained from all
subjects and the data were used anonymously only for the
intended research purpose. Also, the principles outlined in
the Helsinki Declaration were followed. The PPG data was
collected 23 times in 90 s length under various conditions

including resting, exercising and sleeping. In the resting
condition, the subject was seated and the reference BP
measurement and PPG signal gathering was performed
simultaneously in 2 minute intervals. During the exercise
condition—which was intended to induce an increase in
BP—the subject performed the leg press exercise with a
weight in the range of 5 to 40 kg depending on their exercise
abilities. After the exercise session, the subject was asked to
sleep for 2 hours to decrease their BP. For the reference
BP reading, two trained nurses measured BP simultaneously
using the auscultatory method. The nurses’ values for each
reference reading were averaged unless the values had a
difference of greater than 4 mmHg.

B. Preprocessing of the PPG signals

The PPG signal was first resampled at a sampling rate of
250 Hz and detrended to remove direct current components.
Next, a bandpass filter with a passband of 0.4-8 Hz was
applied to separate out the noise components.

C. PPG signal selection

To investigate the influence of the four multi-wavelength
PPG signals on the performance of the BP prediction method,
we investigated 15 PPG signal combinations as follows: IR,
R, G, B, IR+R, IR+G, IR+B, R+G, R+B, G+B, IR+R+G,
IR+R+B, IR+G+B, R+G+B, IR+R+G+B.

D. Data preparation for CNN model training

The dataset contained a set of 90 s of raw IR,
red, green, blue PPG signal data in the form Pi =
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(pIRi , pRed
i , pGreen

i , pBlue
i ), with SBP and DBP values denoted

by Yi = (ySBP
i , yDBP

i ), where i is the subject index.
The PPG signal data was separated into training (60 s),
validation (10 s), and test (20 s) datasets. The data was
prepared as input and output data pairs (x,y) suitable for
CNN model training. Three data preparation techniques
were used: random cropping, increasing input depth using
its derivatives, and fast Fourier transform (FFT). Random
cropping allows the model to learn signals from multiple
points of input. Since our model required both time and
frequency components as input signals, we concatenated the
first and second derivatives of the time-domain signal to the
original time-domain signal to increase the depth of the input
signal as follows [12]:

Xt = Xt ⊕ ∆Xt ⊕ ∆2Xt (1)

Finally, we converted the original time-domain signal to
a frequency-domain signal using FFT. Thus, the dataset
(Xt, Xf , Y ) was prepared for CNN model training.

E. Network architectures

To learn the frequency characteristics as well as time
features from the original PPG, we proposed a CNN-based
BP prediction model. It consists of three parts: a time
encoder, a frequency encoder, and three predictors for time,
frequency, and combined feature matrices. The time encoder
ht(·) learns representative features from time-series inputs
xt, and outputs the corresponding feature matrix zt. In
parallel with the time encoder, the frequency encoder hf (·)
outputs the feature matrix zf for the frequency domain
inputs, xf . Each encoder is composed of two stacked core
modules named the extraction and concentration blocks,
which are designed to effectively learn latent features from
the periodic data. The extraction block can learn the various
relationships between different neighboring pixels through
multiple dilated convolutions, whereas the concentration
block can consider a wide range of multiple pixels together
in the down-sampling step through strided convolution. Both
the time encoder and the frequency encoder consist of
four extraction+concentration combinations. After feature
extraction through both the time and frequency encoders,
the combined feature matrix zc = zt ⊕ zf can be defined.
The combined predictor fc(·) consists of a double stacked
convolution layer, global average pooling, and a dimension
reduction convolution layer. The output ŷc of fc(·) is
two real numbers which indicate SBP and DBP. The
prediction minimizes the distance between the target y and
the prediction yc. The minimization objective is defined as

Lc = d(yc, ŷc), (2)

where d can be any distance metric between real numbers;
in this case, L1. In addition to this, two auxiliary flows from
the predictors ft(·) and ff (·) were added which take the
pre-concatenated features zt and zf as inputs, respectively.
Both auxiliary predictors have a simpler structure which
consists of one convolution layer, global average pooling,
and a dimension reduction convolution layer. Auxiliary loss

TABLE I
BP PREDICTION PERFORMANCE BY THE INPUT PPG COMBINATIONS

SBP DBP

MAE† STD‡ MAE STD

Infrared 5.69 1.64 5.02 1.79
Red 6.24 2.40 5.74 2.98

Green 5.28 1.80 4.92 2.42
Blue 5.53 1.77 4.92 2.05

Infrared+Red 6.02 1.91 5.42 2.25
Infrared+Green 5.92 2.49 5.32 2.04

Infrared+Blue 5.67 2.20 5.36 2.51
Red+Green 5.38 1.73 5.10 2.16

Red+Blue 5.56 1.86 5.29 2.93
Green+Blue 5.56 2.06 5.44 2.46

Infrared+Red+Green 6.03 4.17 5.58 2.66
Infrared+Red+Blue 5.78 2.27 5.63 2.49

Infrared+Green+Blue 5.81 2.13 5.34 2.54
Red+Green+Blue 5.68 1.80 5.21 2.38

Infrared+Red+Green+Blue 5.32 1.49 5.32 2.49

† MAE = mean absolute error, ‡ STD = standard deviation

is a well-known technique to help the model’s gradient flow
in the back-propagation phase and improve performance. We
introduce the importance factor α to both losses Lt and Lf

. Our final loss is then defined as follows:

Ltotal = Lc + α(Lt + Lf ), (3)

where the weight of auxiliary loss α = 0.2, in this case.

III. EXPERIMENTAL RESULTS

A. Implementation details

The CNN-based model was implemented in Python with
Pytorch [13] based on a deep learning framework, which was
trained with a maximum of 50 epochs. The Adam optimizer
with β1 = 0.9, β2 = 0.999, and no weight decay was
used. The initial learning rate was 0.0001 and the dropout
rate was set to 0.2 for the entire network. In this study, the
model was run on a machine with six central processing units
(CPUs; Intel i7-6850K CPU @ 3.6GHz) on an Ubuntu 16.04
platform. Four graphic processing units (GPUs; NVIDIA
RTX 2080 Ti) were also used to accelerate the processing of
the experiments.

B. Effect of PPG combination on BP prediction

Evaluations on the different input combinations of PPG
signals for the CNN were conducted. The model was trained
using only the selected PPG signals according to the specified
input combination. Table 1 shows the BP prediction accuracy
of the CNN-based BP prediction for different input PPG
signal combinations. As shown in Table 1, using only the
green signal as an input yielded the best performance on
average compared to other input signal combinations. This
indicates that the green PPG signal has the most required
information for accurate BP prediction. In most subjects, the
highest accuracy was achieved with the green PPG signal
only as an input, but higher accuracy was observed for some
subjects with a blue signal as input. Reflecting the most
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TABLE II
COMPARISON OF BP PREDICTION ACCURACY TO OTHER WORKS

SBP DBP

MAE STD MAE STD

Y. Zhang [3] 11.64 8.20 7.62 6.78
S. Khalid [5] 4.82 4.31 3.25 4.17

M. Radha† [7] 7.86 1.57 6.49 1.59
S. Baek‡ [11] 5.32 5.54 3.38 3.82

Ours (Green) 5.28 1.80 4.92 2.42
Ours (Best) 4.47 1.53 4.03 1.48

† Root-mean-square-error (RMSE)
‡ End-to-end BP prediction using ECG, PPG

accurate results for each subject, the BP prediction errors are
SBP 4.47 and DBP 4.03, which are 15.3 and 18.1% better
than the green signal alone as an input, respectively.

C. Performance comparison with other related works

Table 2 shows the comparison of BP prediction accuracy
between the proposed method and previous studies. From
Table 2, it can be seen that the CNN-based BP prediction
method in this study showed comparable performance to
other studies using a single PPG signal. In addition, it can
be seen that the performance are equivalent when compared
with the end-to-end BP prediction study using both ECG and
PPG. From an application perspective, we can expect that the
proposed method will be robust for a wearable device, which
limits the use of multiple sensors.

IV. DISCUSSION

Our CNN-based BP prediction method achieved the best
performance in most cases using a green PPG time signal
in combination with an instantaneous frequency signal. It
used the raw PPG signal as an input without unique feature
extraction. Notably, an on-device application is advantageous
as there is no need for additional equipment or special
conditions for feature extraction. Interestingly, some subjects
had greater BP prediction accuracy with the blue PPG signal
as the input. In BP estimation, a red or IR PPG light is
often used because the long wavelength is able to penetrate
deeper into the skin and is more capable of detecting signals
from the deep arteries [14]. However, since the light also
travels through the epidermis and dermis, the variation in the
detected light is a complex result of the concurrent changes
in the volume of the arteries, arterioles, capillaries, and veins.
In other words, signals such as green and blue, which have
low skin penetration depth, have information that is most
relevant to predicting BP. Since the amount of data used
in the experiment was small and no additional information
such as skin color was identified, the explanation of the
improved accuracy of the blue PPG signal for some subjects
cannot be confirmed, but it is possible that this effect was
due to variations in skin tone. Future research will focus on
improving personalized BP prediction performance by using
PPG light combinations tailored for each individual.

V. CONCLUSION

In this paper, we proposed a method for predicting
BP without feature extraction using a single PPG signal
measured by smartphone using fully convolutional networks.
The concept of estimating BP using a single biomedical
signal such as PPG that can be easily measured from a
mobile device without the inconvenience of wearing a cuff is
promising for self-monitoring of BP. Unlike many previous
studies, we have shown that BP can be estimated directly
from raw signals without preprocessing to extract features
from the PPG signal. Our study was limited given that
data acquisition was from only 26 volunteers and no other
additional information such as skin color was recorded. We
plan to expand our research, including by acquiring data that
can be verified by IEEE Standard 1708-2014, a universal
standard for the validation of BP measuring devices.

REFERENCES

[1] T. G. Pickering, K. Eguchi, and K. Kario, “Masked hypertension: a
review,” Hypertension Research, vol. 30, no. 6, p. 479, 2007.

[2] S. K. Glen, H. L. Elliott, J. L. Curzio, K. R. Lees, and J. L. Reid,
“White-coat hypertension as a cause of cardiovascular dysfunction,”
The Lancet, vol. 348, no. 9028, pp. 654–657, 1996.

[3] Y. Zhang and Z. Feng, “A svm method for continuous blood pressure
estimation from a ppg signal,” in Proceedings of the 9th International
Conference on Machine Learning and Computing. ACM, 2017, pp.
128–132.

[4] C. Holz and E. J. Wang, “Glabella: Continuously sensing blood
pressure behavior using an unobtrusive wearable device,” Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 3, p. 58, 2017.

[5] S. G. Khalid, J. Zhang, F. Chen, and D. Zheng, “Blood pressure
estimation using photoplethysmography only: comparison between
different machine learning approaches,” Journal of healthcare
engineering, vol. 2018, 2018.

[6] Y. Liang, Z. Chen, R. Ward, and M. Elgendi, “Photoplethysmography
and deep learning: Enhancing hypertension risk stratification,”
Biosensors, vol. 8, no. 4, p. 101, 2018.

[7] M. Radha, K. De Groot, N. Rajani, C. C. Wong, N. Kobold,
V. Vos, P. Fonseca, N. Mastellos, P. A. Wark, N. Velthoven et al.,
“Estimating blood pressure trends and the nocturnal dip from
photoplethysmography,” Physiological measurement, vol. 40, no. 2,
p. 025006, 2019.

[8] C.-C. Chang, C.-T. Wu, B. I. Choi, and T.-J. Fang, “Mw-ppg sensor:
An on-chip spectrometer approach,” Sensors, vol. 19, no. 17, p. 3698,
2019.

[9] L. Yan, S. Hu, A. Alzahrani, S. Alharbi, and P. Blanos, “A
multi-wavelength opto-electronic patch sensor to effectively detect
physiological changes against human skin types,” Biosensors, vol. 7,
no. 2, p. 22, 2017.

[10] M. S. Tanveer and M. K. Hasan, “Cuffless blood pressure estimation
from electrocardiogram and photoplethysmogram using waveform
based ann-lstm network,” Biomedical Signal Processing and Control,
vol. 51, pp. 382–392, 2019.

[11] S. Baek, J. Jang, and S. Yoon, “End-to-end blood pressure prediction
via fully convolutional networks,” IEEE Access, vol. 7, pp. 185 458–
185 468, 2019.

[12] Y. Liang, Z. Chen, R. Ward, and M. Elgendi, “Hypertension
assessment via ecg and ppg signals: An evaluation using mimic
database,” Diagnostics, vol. 8, no. 3, p. 65, 2018.

[13] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in pytorch,” in proc. NIPS AutodiffWorkshop, 2017.

[14] A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of
the photoplethysmogram in circulatory monitoring,” Anesthesiology:
The Journal of the American Society of Anesthesiologists, vol. 108,
no. 5, pp. 950–958, 2008.

191


