
Audio, Visual, and Electrodermal Arousal Signals as Predictors of
Mental Fatigue Following Sustained Cognitive Work

James R. Williamson1, Kristin J. Heaton2, Adam Lammert3, Katherine Finkelstein4,
Doug Sturim1, Christopher Smalt1, Gregory Ciccarelli1, and Thomas F. Quatieri1

Abstract— Lapses in vigilance and slowed reactions due to
mental fatigue can increase risk of accidents and injuries
and degrade performance. This paper describes a method for
rapid, unobtrusive detection of mental fatigue based on changes
in electrodermal arousal (EDA), and changes in neuromo-
tor coordination derived from speaking. Twenty-nine Soldiers
completed a 2-hour battery of cognitive tasks intended to
induce fatigue. Behavioral markers derived from audio and
video during speech were acquired before and after the 2-
hour cognitive load tasks, as was EDA. Exposure to cognitive
load produced detectable increases in neuromotor variability
in speech and facial measures after load and even after a
recovery period. A Gaussian mixture model classifier with cross-
validation and fusion across speech, video, and EDA produced
an accuracy of AUC=0.99 in detecting a change in cognitive
fatigue relative to a personalized baseline.

I. INTRODUCTION

Fatigue can be defined as a psychophysiological state in
which capacity to function (physically and/or mentally) is
diminished through exertion [1]. Mental fatigue is associated
with an increased risk of accidents and injuries due to
inattention, impaired decision making, and degraded motor
performance [2]. Accurate detection of fatigue is therefore
critical before errors are made and accidents occur. At
present, there are few methods available that provide rapid,
objective and yet unobtrusive evaluation of mental state for
use in military operational and training environments [3].

Mental fatigue is typically quantified using subjective
ratings of effort, motivation, mood and alertness, objective
measures of cognitive and physical performance, and physio-
logical measures. As demands on mental resources increase,
self-ratings of tiredness [4] and perceived effort [5] increase,
while ratings of motivation to perform [6] and alertness
[7] decrease. However, subjective measures are limited by
not accounting for individual reporting bias or motivation,
leading to possible under or over-estimation of perceived
workload [8]. Objective performance measures may require
interruption of the task at hand to explicitly elicit verbal
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or motor responses to discrete stimuli. Speech and facial
expression can provide an objective, continuous measure of
performance that does not interfere with the primary task
because it can be captured unobtrusively during conversation.

Furthermore, there is a neurobiological link between cog-
nitive state and speech production. Mental fatigue develops
over time from sustained cognitive demands and is associated
with a decrease in cognitive resources available for planning,
executive functioning, attention, and fine- and gross-motor
activity. Mental workload modifies a finely tuned neural reg-
ulatory system interconnecting motor and non-motor areas
[9]. Mental fatigue desynchronizes brainwave oscillations
that are responsible for functional connectivity across these
neural regions [9], resulting in loss of coordination across
components of motor activities such as speech production.
In addition, mental workload reduces processing resources
allocated to motor tasks such as speech production [10], [11].
Speech markers with particular relevance for assessment of
mental fatigue include prosody (e.g. pitch variation) [10],
[12] and formant structure [11].

Motivated by these observations, we leverage a class of be-
havioral speech biomarkers that measure speech articulatory
coordination (SAC) and that are hypothesized to be sensitive
to changes in neuromotor coordination [13], [14]. This work
differs from our previous speech/fatigue study [14] with a)
a different, larger data collection, b) new audio/video SAC
features, c) a new, complementary modality (EDA), and d)
using only pre/post speech samples rather than recordings
while under mental workload throughout the experiment.

II. METHODS
A. Experimental Protocol

The protocol was approved by the U.S. Army Research
Institute of Environmental Medicine Institutional Review
Board (USARIEM IRB) and the U.S. Army Medical Re-
search and Materiel Command IRB. The investigators ad-
hered to the policies for protection of human subjects as
prescribed in Army Regulation 70-25 and the provisions of
32 CFR Part 219. All participants were briefed on study
procedures and gave informed consent prior to the research
study. The subjects were 29 active duty Soldiers, predomi-
nantly male (83%) with ages 18-26 yrs (mean: 20.21; SD:
2.21).

The 5-day study consisted of an initial screening (Day 1),
training (Days 2-4) and experimental procedures (Day 5).
In the experiment, speech was collected in three sessions:
immediately prior to two-hours of cognitive load (Pre),
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immediately following load (PL1), and 15 minutes after the
conclusion of PL1 (PL2).

B. Signal Acquisition

Speech was recorded using a standardized protocol includ-
ing i) read speech (“The Rainbow” [15]), ii) sustained vowels
(repeat and hold each of 5-6 vowels for 10 seconds), iii)
repeated phonemes (repeat the sounds “pa-ta-ka” as many
times as possible in one breath), iv) free speech (respond to
open-ended questions such as “Describe a vacation you have
taken.”), and v) facial expressions (react to cartoon drawings
with contextually appropriate facial and verbal expressions
[16]).

Pulse, EDA, and skin temperature data were measured,
but only EDA results are reported here because pulse and
temperature data were degraded in multiple participants.
EDA was available for all but one participant. All signals
were acquired using the MindMedia (Herten, Netherlands)
NeXus-10 laboratory biofeedback system. Skin conductance
was collected using EDA electrodes on the palmar surface
of the medial phalange of the first/index finger and third/ring
finger of the left hand using a thin Velcro strip.

Audio signals were acquired using a lapel-based (DPA
4061-BM) and a boom microphone (Sennheiser ME66).
Video recordings were captured using a high-definition video
camera (Canon XA20; Melville, New York). Audio was
recorded at 96 kHz, and video was recorded at 30 frames
per second (FPS). The read and free speech passages, which
are 107 and 89 seconds in duration on average, were se-
lected for analysis because previous research has shown that
SAC features are most effective for long duration speech.
The EDA signals were analyzed only during these speech
passages so that the signals were compared under similar
conditions.

C. Low-level features

Raw audio was first transformed into low-level features.
Different acoustic frequencies are emphasized or attenuated
in a time-varying way as speech articulators move. These
frequency patterns were captured using formant frequencies
and mel-frequency cepstral coefficients. The three lowest
formant frequencies were tracked and extracted every 10 ms
from the audio signal using the KARMA software tool [17].
Delta-formants (dFormants), the discrete-time derivatives of
the formants, were also computed. A total of 16 delta-
MFCCs (dMFCCs), which are the discrete time derivatives of
Mel-frequency cepstral coefficients (MFCCs), were extracted
using openSMILE [18]. Visual speech-related movements
from video of the face during speaking were also captured.
Facial action unit (FAU) features were extracted using the
software tool openFace [19]. The intensity of 17 FAUs from
each video frame were estimated along with delta-FAUs
(dFAUs), which are their discrete-time derivatives across
video frames.

EDA signals were processed using the software tool
cvxEDA in the NeuroKit python toolkit [20], which gener-
ates the raw EDA signal and its phasic and tonic components.

In this approach phasic activity is assumed to be superim-
posed on a slowly varying tonic activity that has a spectrum
below 0.05 Hz.

D. High-level features

It is hypothesized that changes in neurological functioning,
including temporary decrements due to mental fatigue, alter
the neuromotor timing and coordination of speech articula-
tion. Measures have been developed that quantify the level
of motor coordination through correlation patterns among
different channels of each low-level multichannel feature
set [13]. Features that capture levels of coordination from
speech, referred to as speech articulatory coordination (SAC)
features, were next extracted from the low-level features.

SAC features are the eigenspectra of channel-delay corre-
lation matrices that are computed from low-level multichan-
nel signals derived from speech. The correlation matrices are
constructed using time-delay embedding at multiple delay
scales. Specifically, a channel-delay correlation matrix at
delay scale j is computed as

Rj=

R1,1(j) . . . R1,M (j)
...

. . .
...

RM,1(j) . . . RM,M (j)

 (1)

where M is the number of low-level feature channels. Each
submatrix Rc1,c2(j) contains the set of correlations between
channels c1 and c2 at scale j,

Rc1,c2(j)=

r1,1(j) . . . r1,N (j)
...

. . .
...

rN,1(j) . . . rN,N (j)


c1,c2

(2)

N is the number of delays per channel and [rd1,d2
(j)]c1,c2

is the correlation, at scale j, between channel c1 at delay d1
with channel c2 at delay d2.

Complexity within the correlation matrix is quantified
using the matrix eigenspectrum. A greater concentration of
weight in the largest eigenvalues indicates lower complexity,
whereas a greater concentration of weight in the smaller
eigenvalues indicates higher complexity. Fig. 1 diagrams
how the SAC measures were computed from speech formant
frequencies.

Notional effect sizes of the eigenspectra features, which
are in descending order of size, are plotted in Fig. 1. The
pattern of effect sizes as a function of eigenvalue index indi-
cates how different types of neuromotor degradation can be
manifested in speech, either through more erratic (red line) or
more simple (black line) speech articulation. Previous work
has shown that certain sources of degraded mental state, such
as major depressive disorder, produce coordination patterns
that are less complex [21]. Other sources of degraded mental
state produce patterns that appear more complex, which
in the context of degraded mental state can be interpreted
as more erratic. These sources include cognitive load [13],
physical fatigue combined with exposure to heat or altitude
[22] and mental fatigue [14]. We speculate that the observed
correlations in deviations of the eigenspectrum with a variety
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Fig. 1. Computation of SAC features from speech formants.

of neuropsychological changes are driven by changes in
the underlying neuroregulatory systems, as discussed in the
Introduction.

In the present analysis, the effects of cognitive fatigue
on speech neuromotor coordination are evaluated using SAC
measures computed from five feature sets: formants, dFor-
mants, dMFCCs, FAUs and dFAUs. Time delay embedding
is done at four delay scales, with delay spacings of 1, 3, 7
and 15 frames. These correspond to time delays of 10, 30,
70 and 150 ms per delay for the 100 Hz audio-based features
and time delays of 33, 100, 230, and 500 ms per delay for
the 30 Hz video-based features. There were 15 time delays
per scale, ranging from a delay of zero up to a delay of 14
times the delay-scale spacing. The number of channels for
the low-level features are: M = 3 (formants, dFormants),
M = 16 (dMFCC), and M = 17 (FAUs, dFAUs). The EDA
high level features are the mean and standard deviation of
the raw, phasic, and tonic EDA signals.

E. Machine Learning

The primary goal of this work is to detect cognitive
fatigue, assumed to exist post two hour mental workload
but not before, based on SAC and EDA features. To test
this capability, the dataset of 29 participants was randomly
partitioned into five cross-validation test folds of five or six
participants each. For each of those folds, the classifier was
trained on the remaining subjects. The SAC features consist
of eigenvalue vectors concatenated across four delay scales.
The EDA features consist of six statistical features.

The SAC and EDA measures were normalized to have zero
mean within subject prior to dimensionality reduction via
principal component analysis (PCA). This was done because
the detection problem is to find within-subject changes
rather than across-subject variation. The substantial, natu-
ral, person-to-person variability in absolute feature values
further motivates this normalization procedure. Additionally,
we believe this step is perfectly in line with a fieldable
algorithm because speech is so easily collected that the idea
of voice banking a person’s natural speech under different
conditions may become as accepted a practice as charting
blood pressure, heart rate, and weight.

Specifically, prior to PCA, the mean of each feature
element was computed across the three sessions, per subject,
and subtracted. Then, the training set features were z-scored,
across all the subjects, and PCA was applied. This within-
subject feature subtraction was also applied to the held-out
test subjects. Then, the z-scoring and PCA transforms from
the training set were applied to the held-out test data.

The single free parameter for each feature set is the
number of principal components, K, that are extracted. K
is selected using another level of cross-validation within the
training set in order to produce unbiased detection accuracy
estimates. Within each training fold, a second level of four-
fold cross-validation is done, with potential values of K
varied between one and 15, and the value of K is selected
that produces the highest average area under the ROC curve
(AUC) within the training fold. In addition, if AUC < 0.6
then this feature set is not included in any fusion across
feature sets or across speech tasks on the associated test fold.

The classification method first creates a probability density
model for each feature set from the training data using
unsupervised learning that is inclusive of all three experi-
mental sessions (Pre, PL1, PL2). Next, two-class conditional
probability density models are created by shifting the prob-
ability density toward the features from the Pre (Class 1)
and PL1 (Class 2) sessions. Given a test datum, the log-
likelihood ratio of the two models is the output score. The
classification method was implemented by fitting a Gaussian
mixture model (GMM) to the training data and adapting
this unsupervised model to the two output classes using the
procedure described in [23]. The GMM uses 10 Gaussian
components with diagonal covariance matrices, which are fit
to the training data of both output classes using five iterations
of the Expectation Maximization algorithm. In addition,
10 independent GMMs are trained (with different random
initializations), and the GMM likelihoods for each class are
summed over the ensemble of models before computing the
final output score from the log-likelihood ratio of the sums.

III. RESULTS

Fig. 2 shows effect sizes associated with mental workload
observed for the Formant (top left), dFormant (top right),
FAU (bottom left), and dFAU (bottom right) SAC features.
These plots show the effect size of features computed from
read speech and free speech in the PL1 session compared
to those from the Pre session, all at the first delay scale.
The effect size patterns are broadly similar to the notional
pattern in Fig. 1 (lower right) that is indicative of more erratic
speech.

Accuracy in detecting mental fatigue, based on feature
changes such as those shown in Fig. 2, is quantified using
the AUC, which is computed from a union of prediction
scores across the five cross-validation test folds. Table I
shows the AUC results for each speech SAC feature set
on both read and free speech, and testing on the PL1 and
PL2 sessions. dFormant and dFAU features are effective on
both read and free speech. dMFCC and FAU features are
effective on read speech only, whereas formant features are
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Fig. 2. Effect sizes of Formant (top left), dFormant (top right), FAU (bottom
left), and dFAU (bottom right) SAC features for read and free speech at the
first delay scale.

TABLE I
ACCURACY IN DETECTING COGNITIVE FATIGUE FROM INDIVIDUAL

FEATURE SETS.

Feature Read AUC Free AUC
PL1 PL2 PL1 PL2

Formant 0.53 0.56 0.77 0.71
dFormant 0.79 0.75 0.72 0.70
dMFCC 0.73 0.73 0.53 0.49
FAU 0.71 0.61 0.47 0.59
dFAU 0.70 0.57 0.75 0.71

TABLE II
ACCURACY IN DETECTING COGNITIVE FATIGUE BY FUSING ACROSS

FEATURE SETS AND SPEECH PASSAGES.

Modality Read AUC Free AUC R, F AUC
PL1 PL2 PL1 PL2 PL1 PL2

Audio 0.80 0.77 0.73 0.66 0.85 0.80
Video 0.78 0.60 0.75 0.73 0.84 0.74
A,V 0.85 0.77 0.77 0.74 0.93 0.86
EDA 0.91 0.88 0.82 0.84 0.91 0.91
A,V, EDA 0.96 0.92 0.91 0.90 0.99 0.97

effective on free speech only. Overall, the AUC values show
that individual SAC feature sets are moderately effective at
detecting fatigue, and that detection performance declines
somewhat in PL2.

Table II shows how detection performance improves with
fused combinations of SAC predictions. These fusions are
shown both across different feature sets, and across the read
and free speech passages. Audio and Video SAC features
achieve similar performance, with AUCs of 0.85 and 0.84 by
combining across read and free speech. Fusing across audio
and video features, and across read and free speech produces
AUC of 0.93 for PL1. SAC features show a moderate decline
in accuracy between PL1 and PL2. Finally, fusing across
all feature modalities produces extremely high detection
accuracy, with AUC=0.99.

IV. DISCUSSION

We compared the efficacy of speech, facial expression, and
EDA, individually and when fused, at detecting a change in
fatigue relative to a personalized baseline that is produced
by two hours of cognitive work. The detection was done
both immediately following the work, and after a short rest
period.

In the two post-load sessions, speech and facial features
showed an increase in the independence and variability of
underlying motor components of each modality, consistent
with previous findings in smaller datasets on cognitive load
[13] and cognitive fatigue [14]. An unexpected finding with
both modalities was the small difference in accuracy in
detecting the two post-load conditions, indicating a strong
lingering effect of the two hours of mental activity.

Audio and video modalities produced similar accuracy in
detecting fatigue on both read and free speech. For both
modalities, better detection performance was found on read
speech than free speech, with the best performance found by
fusing across both speech types. Finally, the highest detection
accuracy of AUC=0.99 was found by fusing across the audio,
video, and EDA modalities, as well as across the two types
of speech. These results indicate that speech articulatory
coordination, estimated from audio and/or video, has strong
potential for use as a practical indicator of cognitive fatigue.
Furthermore, though neuromotor coordination analysis was
applied to speech motor control, the concept may generalize
to other signals derived from neural function.
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