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Abstract—Each mixture of deficient molecular families of a 

specific disease induces the disease at a different time frame in 

the future. Based on this, we propose a novel methodology for 

personalizing a person’s level of future susceptibility to a specific 

disease by inferring the mixture of his/her molecular families, 

whose combined deficiencies is likely to induce the disease. We 

implemented the methodology in a working system called DRIT, 

which consists of the following components: logic inferencer, 

information extractor, risk indicator, and interrelationship 

between molecular families modeler. The information extractor 

takes advantage of the exponential increase of biomedical 

literature to extract the common biomarkers that test positive 

among most patients with a specific disease. The logic inferencer 

transforms the hierarchical interrelationships between the 

molecular families of a disease into rule-based specifications. The 

interrelationship between molecular families modeler models 

the hierarchical interrelationships between the molecular 

families, whose biomarkers were extracted by the 

information extractor. It employs the specification rules and the 

inference rules for predicate logic to infer as many as possible 

probable deficient molecular families for a person based on 

his/her few molecular families, whose biomarkers tested positive 

by medical screening. The risk indicator outputs a risk indicator 

value that reflects a person’s level of future susceptibility to the 

disease. We evaluated DRIT by comparing it experimentally with 

a comparable method. Results revealed marked improvement.  

  Keywords- Gene-disease association, disease risk indicator, 

information extraction, predicate logic, inference rules. 

I. INTRODUCTION 
We introduce in this paper a novel methodology for 

personalizing a person’s level of future susceptibility to a 
specific disease. The methodology overcomes the limitations 
of current methods. We implemented the methodology in a 
working system called Disease Risk Indicator Tool (DRIT). 
The proposed system DRIT is able to predict the level of 
future susceptibility to a specific disease for a person. It is 
composed of the following four components: information 
extractor, interrelationship between molecular families 
modeler, logic inferencer, and risk indicator. The information 
extractor extracts from biomedical literature the common 
biomarkers that test positive among most patients with a 
specific disease. The component employs novel strict rule-
based information extraction techniques constructed based on 
established linguistic theories. These strict rules ensure that 
only the biomarkers terms that are closely associated with a 
disease are extracted.  

The interrelationship between molecular families modeler 
models the hierarchical interrelationships between the 
molecular families of a disease , whose biomarkers were 
extracted by the information extractor. This helps in inferring 

the mixture of molecular families, whose combined 
deficiencies may induce the disease. It also helps in 
inferring a person’s probable deficient molecular 
families of a disease based on his/her biomarkers that 
tested positive by medical  screening. 

The logic inferencer infers as many as possible probable 
deficient molecular families of a disease for a person based on 
his/her few molecular families, whose biomarkers tested 
positive by medical screening. This is crucial because, the 
more deficient molecular families of a disease inferred for a 
person, the more accurate is the prediction of his/her level of 
future susceptibility to the disease. With reference to the 
hierarchical interrelationships between the molecular 
families, the component first composes rule-based 
specifications that reflects the relationships between the 
molecular families of a specific disease. Then, the component 
uses a person’s initial deficient molecular families as given 
premises to recursively trigger the appropriate specification 
rules by applying the standard inference rules of predicate 
logic. This leads to inferring as many as possible deficient 
molecular families of a disease for the person. Each mixture of 
molecular families, whose combined deficiencies may 
induce a specific disease, gives a different indication of future 
level of susceptibility to the disease [3]. Based on this, the risk 
indicator component assigns a risk indicator value for a 
person’s level of future susceptibility to the disease based on 
his/her inferred mixture of deficient molecular families. 

II. OUTLINE OF THE APPROACH 

Fig. 1 presents the system architecture. It shows the 
relationships between the four components comprising our 
proposed system DRIT. With reference to the system 
architecture in Fig. 1, we outline below the sequential 
processing steps taken by DRIT to predict the level of future 
susceptibility to a specific disease for a person:              
1. Information extractor component: This component extracts 

from biomedical literature the common Molecular Markers 
(MMs) that test positive among most patients with a 
specific disease. Section III describes this process in details. 

2. Interrelationship between Molecular Families (MFs) 
modeler component: This component models the 
hierarchical interrelationships between the molecular 
families of a disease, whose MMs were extracted by the 
information extractor component. The component performs 
the modeling through the following steps:  

a) Constructing Molecular Characteristic Trees (MCTs): 
The component constructs MCTs for each set S of 
biomarkers received from the information extractor 
that belongs to a same molecular family. Each tree is 
rooted at one of the biomarkers in the set S. Section 
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IV-A describes this process in details. 
b) Constructing MF Interrelationships Network (MFIN): 

The component constructs a MFIN representing the 
hierarchical interrelationships between the MFs of the 
disease based on their shared biological 
characteristics manifested in their MCTs.  Section 
IV-B describes this process. 

3. Logic inferencer component: This component applies the 
inference rules for predicate logic to infer as many as 
possible deficient MFs for a person. It performs the 
inferencing through the following two steps: 

a) Composing rule-based specifications: The 
component composes specification rules that reflect 
the interrelationships between the different MFs of 
a disease. It composes these rules with reference to 
the MFIN. Section V-A describes this process. 

b) Applying the inference rules for predicate logic: 
This component uses the person’s initial molecular 
families, whose biomarkers tested positive by 
medical screening, as given premises to recursively 
trigger the appropriate specification rules. It does so 
by applying the standard inference rules for 
predicate logic. Section V-B describes this process. 

4. Risk indicator component: Based on the mixture of deficient 
molecular families of the person inferred by the logic 
inferencer component, this component outputs a risk 
indicator value. The indicator reflects the person’s level of 
future susceptibility to the disease. 

    
Fig. 1: DRIT system architecture 

III. INFORMATION EXTRACTOR 

We first retrieve the biomedical literature associated with a 
specific disease from reputable biological databases. DRIT 
extracts from each set of publications associated with a disease 
the MM terms that are semantically related to the disease 
terms. We retrieved the literature and disease data from the 
following databases: (1) PubMed [8] for downloading 
published works about diseases, (2) Online Mendelian 
Inheritance in Man (OMIM) [1] for retrieving human genes, 
genetic disorders, and traits, (3) Human Protein Atlas (HPA) 
[8] for retrieving expression profiles of human protein coding 
genes, and (4) UniProtKB [3] for retrieving the functional 
information on proteins. DRIT employs novel computational 
linguistic techniques for extracting the MM terms that are 
semantically related to a disease term. The techniques consider 
not only the explicit co-occurrences of terms but also their 
implicit co-occurrences in sentences.  

IV. INTERRELATIONSHIP BETWEEN MFS MODELER 

A. Constructing MCTs 

Most molecules associated with a disease have 
overlapping biological characteristics. To account for 
these characteristics, we build Molecular Characteristic 
Trees (MCTs) for each MF of a specific disease. An MCT 
models the hierarchical interrelationships between the 
molecules of a MF based on their overlapping 
biological characteristics. A set of MCTs are constructed 
for each MF. The number of these MCTs is the number of the 
MMs extracted by the information extractor component (recall 
Section III) that belongs to the MF. Each MCT will be rooted 
at a node representing one of the MMs of the MF. 

Let S be a set of MFs of a specific disease, whose 
MMs were extracted by the information extractor component. 
To account for the common biological characteristics 
among the molecules of each MF mf  S, we construct 
MCTs for mf. Each MCT mct that belongs to mf is constructed 
as follows. mct will be rooted at a node ni representing a MM 
mmmf. Each molecule mol that is biologically related to mm 
is represented by a node nj and is connected to ni by an edge. 
The molecules biologically related to mol are represented by 
nodes, which will be connected to nj by edges. This process 
continues until all molecules belong to mf are exhausted.  

       Example 1 (running example): Consider the MF “CXC 
chemokine”, which is involved in Type 2 Diabetes (T2D). Fig. 
2 shows a fragment of the MCTs for “CXC chemokine”. The 
two MCTs in the figure are rooted at the MMs “IL-8” and 
“TNF- α”, which belong to “CXC chemokine” and involved in 
T2D. The figure shows fragments of the interrelationships 
between some of the molecules related to the two MMs. 

 

Fig 2: Fragment of MCTs for the MF “CXC chemokine” associated with T2D 

B. Constructing MFIN 

To infer the MFs, whose combined deficiencies induces a 
specific disease, we need to identify their interrelationships. 
These interrelationships will be transformed by DRIT into 
inference specification rules, which will be used by the system 
to infer as many as possible deficient MFs for a person. 
Towards this, we construct a network representing the 
hierarchical interrelationships between the MFs of a disease 
based on their shared molecules manifested in the MCTs 
of these MFs. We call the resulting network MF 
Interrelationships Network (MFIN). 

The hierarchical relationship between two MFs mfx 
and mfy is depicted in the MFIN based on the relative 
hierarchical levels of their common molecules at their 
MCTs. Let ŝ be a set of common molecules between mfx 
and mfy. Let the hierarchical levels of ŝ in the MCT of 
mfx be higher than the hierarchical levels of ŝ in the MCT 
of mfy. In this case, mfx is more specific and the 
direction of the relationship between mfx and mfy is 
manifested in the MFIN by an edge from mfx to mfy. 



    Example 2 (running example): Fig. 3 shows a fragment 
of MFIN depicting the interrelationships between the MFs 
associated with T2D in our running example. 

 
Fig 3: A fragment of MFIN depicting the hierarchical interrelationships 
between MFs associated with T2D in our running example. MFxyz denotes the 
MF, whose name abbreviation is xyz 

V. LOGIC INFERENCER 

A. Composing Rule-Based Specifications 

We compose rule-based specifications that reflect the 
interrelationships between MFs, whose combined deficiencies 
may induce a specific disease. Eventually, these rules will be 
used by DRIT as inference rules to infer as many as possible 
probable deficient MFs of a disease for a person. We 
composed these rules with reference to the MFIN (recall 
Section IV-B) that depicts the interrelationships between MFs. 
Towards this, we convert the interrelationships between the 
MFs manifested in MFIN into transformation rules. 
Specifically, we convert the hierarchical interrelationships 
between the MFs in MFIN by chaining them together into 
logical transformation rules. 

We compose the rule-based specifications in a format 
resemble the premises of predicate logic [9, 12]. A predicate is 
a logical statement composed of one or more variables. It is 
transformed to a proposition by connecting its statements by 
logical connectives. In the framework of DRIT, the 
specification rules are developed in the same manner. 
Specification rules are updated periodically to reflect newly 
discovered MMs for a disease or/and newly published works 
about the disease.  

  Example 3 (running example): Fig. 4 shows a fragment 
of specification rules that reflect the interrelationships between 
MFs associated with T2D constructed with reference to the 
MFIN in our running example shown in Fig. 3. 

 

Fig. 4: A Sample of specification rules that reflect the interrelationships 

between MFs associated with T2D constructed with reference to the MFIN in 

Fig. 3. Ri denotes rule/premise number i. The logic symbols “”, “ ”, and  

“→” denote conjunction, logical disjunction, and implies respectively 

B. Applying the Inference Rules for Predicate Logic  

The more deficient MFs of a disease identified for a person, 
the more accurate is the prediction of his/her level of future 
susceptibility to the disease. Therefore, we propose to use the 
inference rules of predict logic [2, 6] to infer as many as 
possible probable deficient MFs of a disease for a person 
based on his/her few MFs, whose MMs tested positive by 
medical screening.  

By matching a person’s biological molecules (e.g., MMs) 
that revealed abnormalities for a specific disease by medical 
screening with the corresponding ones in the MCTs of the 
disease’s MFs, DRIT is able to identify the person’s initial 
deficient MFs. DRIT will use these initial MFs as given 
premises to trigger the appropriate specification rules (recall 
Section V-A) by applying the standard inference rules for 
predicate logic. This will lead to implicitly infer as many as 
possible probable deficient MFs of the disease for the person. 
Fig. 5 shows the major standard inference rules for predicate 
logic [12]. Thus, DRIT employs the following for inferring 
most of the deficient MFs of a disease for a person: (1) the 
specification rules (i.e., premises) of a disease, (2) the initial 
deficient MFs (i.e., given premises) for a person identified by 
medical screening, and (3) the standard inference rules for 
predicate logic (recall Fig. 5).  

The specification rules are triggered by applying the 
standard inference rules for predicate logic. DRIT triggers 
recursively the specification rules using the given premises, 
auxiliary inferred premises, and the standard inference rules 
for predicate logic. At each recursion, a specification rule (i.e., 
a premise) is triggered and applied to the premises that have 
been proven previously. This will lead to a newly proven 
premise. The conclusions will be a set of inferred MFs. The 
conclusions are valid, if they have been deducted from all 
previous premises [11, 12]. 

 

      Fig. 5: Major standard inference rules for predicate logic 

        Example 4 (running example): Consider that the initial 
deficient MFs of T2D identified by medical screening for a 
person are MFsMB and MFCTM. As Fig. 6 shows, the inference 
rules could infer the following four MFs for the person: (1) 
MFTRXN (from step 5), (2) MFATM (from step 8), (3) MFRRR 

(from step 10), and (4) MFTRAN (from step 13).  



 
Fig 6: Inferring MFTRXN, MFATM, MFRRR, and MFTRAN from the given premises 

MFSMB and MFCTM, which are associated with T2D, as described in our 
running example 4. 

VI. RISK INDICATOR 

Each different mixture of MFs, whose combined deficiencies 
may induce a specific disease, gives a different indication for 
future level of susceptibility to the disease [3]. That is, each 
different mixture of deficient MFs induces the disease at a 
different time frame in the future. Thus, a mixture of inferred 
deficient MFs of a disease for a person can be an indicative of 
the person’s level of future susceptibility to the disease. This 
led us to assign a risk indicator (e.g., in a scale from 1 to 10) 
for each mixture of deficient MFs of a specific disease. Each 
indicator reflects a person’s level of future susceptibility to a 
disease. An indicator value is assigned to a mixture of MFs of 
a disease based on established and well-known facts about the 
disease. We collected these facts from the following:  

(1)  Information extracted from biomedical literature 
associated with each disease. 

(2)  Information obtained by consulting medical 
professionals.  We compiled a table of risk indicator 
values and their corresponding mixtures of MFs of a 
disease. By matching a person’s deficient mixture of 
MFs with the different mixtures in the table, DRIT will 
return the corresponding risk indicator in the table. 

VII. EXPERIMENTAL RESULTS 

We implemented DRIT in Java and ran it under Windows 10 
Pro and Intel(R) Core(TM) i7-6820HQ processor. The RAM 
and CPU of the machine have 16 GB and 2.70 GHz 
respectively. We evaluated DRIT by comparing it 
experimentally with SCAIView [13]. SCAIView incorporates 
the following two external software components for retrieving 
biomedical literatures associated with biomarkers: (1) 
ProMiner, and (2) SCAIView [1]. Retrieved biomedical texts 
are ranked based on the frequency of cooccurrences of 
biomarker-disease associations included within them. 
Extracted biomarker-disease associations are organized into 
classes. We used UMLS [14] database for constructing a 
disease dictionary. We selected the concepts associated with 
the semantic type “Disease”. We compiled the terminology of 
genes’ names by cross-referencing and integrating data 
extracted from the following: (1) UniProt [3], (2) HGNC [5], 
and (3) NCBI-Gene [6] databases. We then used the MeSH 
Browser [1] to map the extracted genes and diseases terms to 
MeSH IDs. Finally, we retrieved the biomedical literature 

associated with the extracted genes and diseases terms from 
PubMed by submitting the following PubMed query: (“diseases” 
[MeSH Terms]) AND “genes” [MeSH Terms] AND (has abstract [text]) AND (English [lang]) 

AND (“0001/01/01” [PDAT]: “2019/04/31” [PDAT]). This resulted in 403,742 

publications. We evaluated DRIT by comparing it with 
SCAIView [13]. We ran DRIT and SCAIView against the 
retrieved biomedical literature described previously. DRIT 
identified 3,418 gene-disease associations. We compared the 
gene-disease associations identified by DRIT and SCAIView 
with the corresponding gold standard ones that we retrieved 
from BIOBASE database [4]. We evaluated the prediction 
accuracy of the two systems in terms of Recall, precision, and 
F-value, where Recall = TP/(TP+FN), Precision = 
TP/(TP+FP), F-value = (2 Precision * Recall)/(Precision + 
Recall), FP = False positive, TP = True Positive, and FN = 
False Negative. Fig. 7 plots the results. The results revealed 
that DRIT outperformed SCAIView. It revealed that the 
performance of DRIT over SCAIView kept increasing at a 
higher rate as the size of dataset kept being increased. This is 
advantageous to DRIT, since the size of biomedical literature 
associated with MMs increases constantly over time in real-
world setting. The results revealed also that the strict linguistic 
rules employed by DRIT contributed to its performance. 

 

 
Fig. 7: The overall average Recall, Precision, and F-value of DRIT and 

SCAIView for predicting gene-disease associations.        
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