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Abstract—Neonatal hypoxic-ischemic encephalopathy (HIE) 

evolves over different phases of time during recovery. Some 

neuroprotection treatments are only effective for specific, short 

windows of time during this evolution of injury. Clinically, we 

often do not know when an insult may have started, and thus 

which phase of injury the brain may be experiencing. To 

improve diagnosis, prognosis and treatment efficacy, we need 

to establish biomarkers which denote phases of injury. Our 

pre-clinical research, using preterm fetal sheep, show that 

micro-scale EEG patterns (e.g. spikes and sharp waves), 

superimposed on suppressed EEG background, primarily 

occur during the early recovery from an HI insult (0-6 h), and 

that numbers of events within the first 2 h are strongly 

predictive of neural survival. Thus, real-time automated 

algorithms that could reliably identify EEG patterns in this 

phase will help clinicians to determine the phases of injury, to 

help guide treatment options. We have previously developed 

successful automated machine learning approaches for 

accurate identification and quantification of HI micro-scale 

EEG patterns in preterm fetal sheep post-HI. This paper 

introduces, for the first time, a novel online fusion strategy that 

employs a high-level wavelet-Fourier (WF) spectral feature 

extraction method in conjunction with a deep convolutional 

neural network (CNN) classifier for accurate identification of 

micro-scale preterm fetal sheep post-HI sharp waves in 1024Hz 

EEG recordings, along with 256Hz down-sampled data. The 

classifier was trained and tested over 4120 EEG segments 

within the first 2 hours latent phase recordings. The WF-CNN 

classifier can robustly identify sharp waves with considerable 

high-performance of 99.86% in 1024Hz and 99.5% in 256Hz 

data. The method is an alternative deep-structure approach 

with competitive high-accuracy compared to our 

computationally-intensive WS-CNN sharp wave classifier. 

Clinical relevance—The suggested classifier could robustly 

identify EEG patterns of a similar morphology in preterm 

newborns during recovery from an HI insult. 

I. INTRODUCTION 

Perinatal difficulties during labor may cause a significant 

HI insult leading to HIE. [1, 2]. Therapeutic hypothermia is 
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now standard of care for providing neuroprotection for HIE 

in term newborns [3]. This treatment derived from pre-

clinical studies in a variety of term fetal and neonatal animal 

species, which showed that therapeutic hypothermia is 

neuroprotective, but only when started within ~6 hours after 

the end of an HI insult, with efficacy greater the earlier the 

treatment is started [3]. Other treatments are being 

developed and may have similar limited windows of 

opportunity, and thus it is important that we establish 

biomarkers to determine phases of injury [1]. 

 Our HI studies in preterm fetal sheep have demonstrated 

that there is shown that there is a significant increase in 

gamma spikes and sharp waves superimposed on a 

suppressed EEG background during the first 6 hours post- 

HI [2, 4-6]. Further, we have demonstrated the timing of 

changes in numbers of sharp waves (Fig. 1) and how they 

correlate to subcortical neuronal injury [6, 7]. The micro-

scale EEG activities evolve over time until the beginning of 

the secondary phase which is generally characterized by the 

appearance of high-amplitude stereotypic evolving seizures 

[8, 9]. Given the potential for micro-scale epileptiform 

events to be an early predictive biomarker for later neural 

injury, there is a need to develop automated strategies for the 

precise identification and characterization of such early 

micro-scale signatures of HIE to help improve our 

management of neonates with HIE.  

We have previously developed various successful 

automated strategies for accurate identification of spikes [4, 

10-13] and sharp waves [6, 14, 15]. Last year, we presented 

a novel deep 2D-CNN classifier, trained over Gaussian 

wavelet scalogram images of EEG segments, which was 

very accurate in identifying sharp waves in the EEG of 

preterm fetal sheep during early post-HI recovery [16]. This 

paper presents, for the first time, a complementary approach 

to our previous work  by demonstrating an exceptionally 

robust 2D-CNN classifier trained over much simpler feature-

sets, instead of using the computationally-heavy high-

resolution scalogram images. The paper describes how the 

new feature extraction strategy of extraction of only the 

major spectral envelopes of an arbitrary EEG epoch, is a 

successful alternative strategy for detection of sharp waves. 

The current approach creates a simpler, but more robust, 

spectral feature map input for a 17-layers deep 2D-CNN 

classifier to accurately identify sharp waves from 

background activity and noise compared to our previous 

computationally-intensive WS-CNN approach. Results are 

reported using both 1024Hz high-frequency data and their 

256Hz down-sampled versions, which is more typically used 

in clinical recordings.  
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Figure 1.  Examples of post HI-insult EEG intervals containing micro-scale 
sharp waves, during the first 2 hours of HI from asphyxicated preterm fetal 

sheep used in: A: traning set (sheep#1). B: test set (sheep#2). 

II. METHODS 

A. Data collection  

The animal procedures in this study were approved by the 

Animal Ethics Committee of the University of Auckland. HI 

signals were collected from two preterm fetal sheep at 

around 0.7 gestational age (~104 days, where term is 147 

days gestation). Fetal sheep brain maturation at this age is 

equal to a preterm human brain of age 27-30 weeks gestation 

[17]. The animal management and surgical procedures have 

been described previously [8]. 7 hours of raw data were 

recorded at 1024Hz using one pair of left/right electrodes 

(made from Cooner wire, Cooner Wire, Chatsworth, CA, 

USA). Probes were symmetrically located on the dura of the 

fetal parasagittal cortex and covered and secured in place 

[8]. A reference electrode was placed over the occiput. 

Technically, this placement provides an electrocorticogram 

recording (ECoG) and therefore we will refer to signal as an 

ECoG. An inflatable silicone occluder was placed around the 

umbilical cord for inflation (25 minutes) to produce and 

acute HI insult. Complete asphyxia was assured by the 

analysis of blood compositions, before and after occlusion 

and cardiovascular changes [8]. The first two hours of post-

HI ECoG recordings from fetal sheep #1 was used for 

training and validation of the 2D-CNN, while the first hour 

post-HI ECoG of fetal sheep #2 was used to test the 

classifier. Data were initially annotated by an expert (HA) 

and provided a sufficient number of sharp waves for 

training, validation, and testing of the classifier. For 

consistency with clinical and experimental definitions, 

pointed peak ECoG events with 70-250ms duration (equal to 

4-12.5Hz) and amplitudes >20μV were labeled as sharps [7]. 

B. Feature extraction  

 Our previous studies detailed the superior compatibility of 

Gaussian 2 basis function for sharp wave analysis in 

comparison to other wavelet basis functions [15, 18]. 

Gaussian 2 (or Mexican hat wavelet) provides desirable 

properties that are well-matched with inherent characteristics 

of an ideal sharp that could allow optimal time-localization 

of an HI sharp wave [15, 18]. A well-designed feature 

extraction approach plays a key role in a machine-learning 

strategy to achieve ideal accuracies. Despite the full-range 

spectral feature extraction (wavelet scalograms) in our 

previous work [16], here, only two spectrally-dominant 

features of an arbitrary ECoG epoch were directly extracted 

from the raw recordings to form an input set, detailed below. 

Data were initially zero-meaned, and the continuous wavelet 

transform (CWT) coefficients of each ECoG segment were 

calculated using Gaussian 2 of scale 32. Moreover, the 

Fourier transform (FFT/IFFT) time-series of the data were 

obtained, and the spectral components within 4-12.5Hz were 

preserved. The 400×1 time series from the CWT and IFFT, 

as well as the original raw ECoG segment, were combined 

to create the input-matrix of size 400×1×3 to be fed into the 

deep 2D-CNN classifier. Examples of the actual post insult 

sharp waves from the original HI ECoG are shown in Fig 

2A-B. The Gaus2 CWT of the sharp waves (scale 32) along 

with the spectrally band-pass filtered patterns from IFFT of 

the sharp waves are demonstrated in Fig 2C-D and Fig2E-F, 

respectively. Similarly, examples of the non-sharp events, as 

well as their corresponding CWTs and IFFTs, are shown in 

Fig 3. Comparing the illustrations in Fig 2 and 3, it is 

inferred that the introduced strategy, through obtaining only 

the main spectrally-dominant features of an arbitrary ECoG 

epoch, can provide rich-enough features for the 2D-CNN to 

build feature maps for acute classification between a sharp 

and a non-sharp event. The classifier was trained and tested 

using the original noisy data to generalize the outcomes. 

C. The proposed deep 2D-CNN classifier 

 Deep learning structures, and in particular, convolutional 

neural networks (CNN), are the enhanced ANNs with 

significant demonstrated ability in image processing of 

epilepsy data [19, 20] and seizure recognition in neonatal HI 

EEG [21, 22]. Recently, we developed an accurate 17-layer 

deep CNN sharp wave classifier, trained over high-

resolution wavelet scalograms of the ECoG segments using 

Gaussian 2 CWT at scale-range of 1-40, with 95.34% 

accuracy [16]. Due to the effective performance of the WS-

CNN classifier, this study used an updated version of the 

2D-CNN architecture from that previously used. However, 

here the classifier was fed with a much simpler input-matrix 

of features, instead of the computationally-intensive 

scalogram images, to accelerate the analysis. The proposed 

2D-CNN classifier is detailed in Table I. A graphical 

demonstration of the proposed WF-CNN classifier is 

represented in Fig 4. The WF-CNN takes the input matrix of 

features (400×1×3), and analyses the extracted feature maps 

through seven convolutional (with rectified linear activation 

units (ReLU) after each convolutional layer), seven max-

pool and three fully connected layers (total of 17 layers). It 

then passes the output through a softmax and a classification 

layer for final reasoning. A stochastic gradient descent with 

momentum (SGDM) strategy was employed to update the 

parameters of the WF-CNN (weights and bias). Learning 

rate, 𝛼, and momentum, 𝛾, parameters were initially set to 

0.01 and 0.9, respectively, to minimize the loss function. 

Due to the satisfactory performance results of the classifier, 

𝛼 and 𝛾 were not further tuned. The classifier was trained 

and validated on the first 2hrs post-HI data from the 1st fetal  



  

 

Figure 2.  (A-B): Examples of post-HI micro-scale ECoG sharp waves.      
(C-D): The corresponding Gassian 2 wavelet transforms of the sharps in A 

and B at scale 32. (E-F): The corresponding inverse Fourier transforms of 

the sharps in A and B using band-pass filter 4-12.5Hz.   

sheep (#1). A random 90 min (75% of the 2 hrs) and the 

remaining 30 min (25% of the 2 hrs) were used, 

respectively, to initially train and validate the classifier. This 

was chosen due to the much higher number of sharp waves 

in the data from sheep #1. One hour data from the 2nd fetal 

sheep (#2) was used for testing the net. The training process 

was executed using a total of 120 epochs. We then down-

sampled the original1024Hz data to 256Hz frequency to 

assess the performance ability of the WF-CNN classifier at 

frequency more commonly used for clinical data sampling. 

A total of 4120 ECoG segments, including 824 sharp waves 

and 3290 non-sharp waves, were manually annotated for 

training, validation, and testing of the classifier. 

III. RESULTS 

The algorithm was developed, trained, and tested in Matlab® 

software on a single workstation computer: Intel® Core™ 

i7-7700 CPU 3.60GHz, 4 cores processor with 16GB RAM 

memory. The confusion matrix results of the WF- CNN 

classifier are displayed in Table II. The trained WF-CNN 

TABLE I.  THE ARCITUCHURE OF THE PROPOSED 2D-CNN 

Layers Type 
No. of  

Neurons 

Kernel 

size 
Stride 

No. of 

Filters 

0-1 Conv. 400×3 3 1 
16 

1-2 Max_pool 400×3 [2 1] 2 

2-3 Conv. 200×2 3 1 
32 

3-4 Max_pool 200×2 2 2 

4-5 Conv. 100×1 3 1 
48 

5-6 Max_pool 100×1 [2 1] 2 

6-7 Conv. 50×1 3 1 
72 

7-8 Max_pool 50×1 [2 1] 2 

8-9 Conv. 25×1 3 1 
96 

9-10 Max_pool 25×1 [3 1] 2 

10-11 Conv. 12×1 3 1 
128 

11-12 Max_pool 12×1 [2 1] 2 

12-13 Conv. 6×1 3 1 
256 

13-14 Max_pool 6×1 [2 1] 2 

14-17 Fully_connected 1536    

 Fully_connected 24    

 Fully_connected 2    

 
Figure 3.  (A-B): Examples of non-sharp ECoG background events. (C-D): 

The corresponding Gaus2 wavelet transforms of the ECoG segments in A 
and B using scale 32. (E-F): The corresponding inverse Fourier transforms 

of the ECoG segments in A and B using band-pass filter 4-12.5Hz. 

classifier accurately identified sharp-waves with an overall 

accuracy of 99.86% for the 1024Hz sampled ECoG (AUC: 

0.999). This was closely followed by 99.50% accuracy for 

the 256Hz down-sampled data (AUC: 0.993 - Fig. 5). This 

was the result of the training of the net over 2720 segments 

within the first 2 h data from sheep #1 and testing the 

classifier over 1 hour ECoG from the 2nd sheep, including 

1400 segments. This is validated through obtaining the very 

minimal number of missed detections (False Negative (FN)) 

and wrong detections (False Positive (FP)). Results suggest 

the correct choice of spectral features for an ECoG epoch is 

a key for obtaining optimal results from a deep neural 

network, where in this case, the WF-CNN demonstrated 

considerable accuracy to correctly classify sharp waves. The 

correct choice of spectral-features also allowed to classify 

upside-down sharps (inverse polarity) within the data. 

IV. CONCLUSION 

This paper is a novel extension to our 2D-CNN sharp-wave 

classifier by introducing a much more computationally-

efficient feature extraction strategy that provides the major 

time-frequency features of an ECoG pattern as the inputs to 

a deep Convolutional Neural Network. The high degree of 

accuracy of the WF-CNN verified the reliability of the 

classifier for the identification of micro-scale sharp wave 

biomarkers from noise and other background activity in 

high-frequency sampled HI ECoG, post HI-insult. The 

proposed strategy is a big step forward towards real-time 

identification of EEG biomarkers by demonstrating 

considerably high-accuracies of 99.86% and 99.50% for the 

1024Hz and 256Hz down-sampled data, respectively. 

Overall, the preliminary, but reliable, results of the this 

paper, using a much simpler but computationally much 

faster feature extraction approach, address the promising 

capability of the introduced WF-CNN classifier for early 

diagnosis of EEG biomarkers in the current 256Hz clinical 

recordings, in real-time. Further data is needed to investigate 

the capabilities of the net on a bigger dataset. 



  

 

Figure 5.  ROCs and the corresponding AUCs for the 1024/256Hz data 

TABLE II.  PERFORMANCE MEASURES OF THE WF-CNN CLASSIFIER ON 

1024HZ AND 256HZ DOWN-SAMPLED DATA 

 

D
a

ta
 

T
P

 h
it

s 

T
N

 h
it

s 

F
P

 h
it

s 

F
N

 h
it

s 

S
en

si
ti

v
it

y
 

(%
) 

S
el

ec
ti

v
it

y
 

(%
) 

P
re

ci
si

o
n

 

(%
) 

A
cc

u
ra

cy
 

(%
) 

1
0
2
4

H
z 

d
a

ta
 

T
ra

in
 

4
3
5
 

1
6
3
2
 

0
 

0
 

100 100 100 100 

V
al

 

1
0
8
 

5
4
3
 

1
 

1
 

99.08 99.82 99.08 99.69 

T
es

t 

2
8
0
 

1
1
1
8
 

0
 

2
 

99.29 100 100 99.86 

2
5
6
H

z 
d

a
ta

 

T
ra

in
 

4
3
5
 

1
6
3
2
 

0
 

0
 

100 100 100 100 

V
al

 

1
0
7
 

5
4
0
 

1
 

3
 

97.27 99.82 99.07 99.39 

T
es

t 

2
7
7
 

1
1
1
6
 

3
 

4
 

98.58 99.73 98.93 99.50 

REFERENCES 

[1] A. J. Gunn and L. Bennet, "Timing still key to treating hypoxic 
ischaemic brain injury," The Lancet Neurology, vol.15,(2),pp.126-127,2016.  
[2] S. K. Dhillon, C. A. Lear, R. Galinsky, G. Wassink, J. O. Davidson, S. 
Juul, N. J. Robertson, A. J. Gunn and L. Bennet, "The fetus at the tipping 
point: modifying the outcome of fetal asphyxia," J. Physiol. (Lond. ), vol. 
596, (23), pp. 5571-5592, 2018.  
[3] G. Wassink, J. O. Davidson, S. K. Dhillon, K. Zhou, L. Bennet, M. 
Thoresen and A. J. Gunn, "Therapeutic hypothermia in neonatal hypoxic-
ischemic encephalopathy," Current Neurology and Neuroscience Reports, 
vol. 19, (1), pp. 2, 2019.  
[4] Abbasi, H., Bennet, L., Gunn, A. J., & Unsworth, C. P. (2019). Latent 
phase detection of hypoxic-ischemic spike transients in the EEG of preterm 
fetal sheep using reverse biorthogonal wavelets & fuzzy classifier. Int J 
Neural Syst, 29(10), 1950013. 
[5] H. Abbasi and C. P. Unsworth, "Electroencephalogram studies of 
hypoxic-ischemic encephalopathy in fetal and neonatal animal models," 
Neural Regen. Res, 15, (5), pp. 828-837, 2020. 

[6] H. Abbasi, P. P. Drury, C. A. Lear, A. J. Gunn, J. O. Davidson, L. 
Bennet and C. P. Unsworth, "EEG sharp waves are a biomarker of striatal 
neuronal survival after hypoxia-ischemia in preterm fetal sheep," Scientific 
Reports, vol. 8, (1), pp. 16312, 2018.  
[7] L. Bennet, J. M. Dean, G. Wassink and A. J. Gunn, "Differential effects 
of hypothermia on early and late epileptiform events after severe hypoxia in 
preterm fetal sheep," J. Neurophysiol., vol. 97, (1), pp. 572-578, 2007.  
[8] L. Bennet, R. Galinsky, V. Draghi, C. A. Lear, J. O. Davidson, C. P. 
Unsworth and A. J. Gunn, "Time and sex dependent effects of magnesium 
sulphate on post‐asphyxial seizures in preterm fetal sheep," J. Physiol. 
(Lond. ), vol. 596, (23), pp. 6079-6092, 2018.  
[9] E. Pavlidis, R. O. Lloyd and G. B. Boylan, "EEG - A Valuable 
Biomarker of Brain Injury in Preterm Infants," Dev. Neurosci., 2017.  
[10] H. Abbasi, A. J. Gunn, L. Bennet and C. P. Unsworth, "Reverse bi-
orthogonal wavelets & fuzzy classifiers for the automatic detection of spike 
waves in the EEG of the hypoxic ischemic pre-term fetal sheep," EMBC 
2015, 2015, pp. 5404-5407. 
[11] H. Abbasi, A. Gunn, L. Bennet and C. Unsworth, "Wavelet spectral 
deep-training of convolutional neural networks for accurate identification of 
high-frequency micro-scale spike transients in the post-hypoxic-ischemic 
EEG of preterm sheep," in EMBC 20, Montreal, Canada, 2020. 
embs.EMBC20.615.89c6daaa 
[12] H. Abbasi, A. J. Gunn, L. Bennet and C. P. Unsworth, "Latent Phase 
Identification of High-Frequency Micro-Scale Gamma Spike Transients in 
the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis 
and Fuzzy Classifiers," Sensors, vol. 20, (5), pp. 1424, 2020. 
[13] H. Abbasi, A. Gunn, L. Bennet and C. Unsworth, "Deep convolutional 
neural network and reverse biorthogonal wavelet scalograms for automatic 
identification of high frequency micro-scale spike transients in the post-
hypoxic-ischemic EEG," in EMBC 20, Montreal, Canada, 2020, 
embs.EMBC20.618.40e1d617. 
[14] H. Abbasi, C. P. Unsworth, A. J. Gunn and L. Bennet, "Superiority of 
high frequency hypoxic ischemic EEG signals of fetal sheep for sharp wave 
detection using wavelet-type 2 fuzzy classifiers,", EMBC 2014, pp.1893-96. 
[15] H. Abbasi, L. Bennet, A. J. Gunn and C. P. Unsworth, "Robust wavelet 
stabilized ‘Footprints of Uncertainty’for fuzzy system classifiers to 
automatically detect sharp waves in the EEG after hypoxia ischemia," Int. J. 
Neural Syst., vol. 27, (03), pp. 1650051, 2017.  
[16] H. Abbasi, L. Bennet, A. Gunn and C. Unsworth, "2D wavelet 
scalogram training of deep convolutional neural network for automatic 
identification of micro-scale sharp wave biomarkers in the hypoxic-
ischemic EEG of preterm sheep," EMBC 2019, 2019, pp. 1825-1828. 
[17] G. H. McIntosh, K. I. Baghurst, B. J. Potter and B. S. Hetzel, "Foetal 
brain development in the sheep," Neuropathol. Appl. Neurobiol., vol. 5, (2), 
pp. 103-114, 1979.  
[18] H. Abbasi, "Investigating micro-scale EEG transients as potential 
biomarkers for early prediction of Hypoxic Ischemia and their relationship 
to perinatal preterm brain injury," 2017. Doctoral thesis. 
[19] Ö Türk and M. S. Özerdem, "Epilepsy Detection by Using Scalogram 
Based Convolutional Neural Network from EEG Signals," Brain Sciences, 
vol. 9, (5), pp. 115, 2019.  
[20] H. Abbasi and C. P. Unsworth, "Applications of advanced signal 
processing and machine learning in the neonatal hypoxic-ischemic 
electroencephalogram," Neural Regen. Res, 15(2), pp. 222-231, 2020.  
[21] A. H. Ansari, P. J. Cherian, A. Caicedo, G. Naulaers, M. De Vos and S. 
Van Huffel, "Neonatal seizure detection using deep convolutional neural 
networks," Int. J. Neural Syst., pp. 1850011, 2018. 
[22] H. Abbasi, A. Gunn, C. Unsworth and L. Bennet, "Deep convolutional 
neural networks for the accurate identification of high-amplitude stereotypic 
epileptiform seizures in the post-hypoxic-ischemic EEG of preterm fetal 
sheep," EMBC 20, Montreal, Canada, 2020, embs.EMBC20.605.c486c7ac. 

               
 

Raw ECoG segment          Spectral-feature-set                                                 2D Convolutional classifier                                       Final classification 
    (1024Hz data)                         400×1×3                                                                     17-layers deep 

Figure 4.  The schematic of our proposed WF-CNN classifier. 


