
  

  

Abstract— Neuronal-related activity can be estimated from 
functional magnetic resonance imaging (fMRI) data with no 
knowledge of the timings of blood oxygenation level-dependent 
(BOLD) events by means of deconvolution with regularized 
least-squares. This work proposes two improvements on the 
deconvolution algorithm of sparse paradigm free mapping 
(SPFM): a new formulation that enables the estimation of 
neuronal events with long, sustained activity; and the 
implementation of a subsampling approach based on stability 
selection that avoids the choice of any regularization parameter. 
The proposed method is evaluated on real fMRI data and 
compared with both the original SPFM algorithm and 
conventional analysis with a general linear model (GLM) that is 
aware of the temporal model of the neuronal-related activity. We 
demonstrate that the novel stability-based SPFM algorithm 
yields activation maps with higher resemblance to the maps 
obtained with GLM analyses and offers improved detection of 
neuronal-related events over SPFM, particularly in scenarios 
with low contrast-to-noise ratio. 
 

Index terms— functional MRI, deconvolution, paradigm free 
mapping, stability selection. 

I. INTRODUCTION 

Deconvolution approaches in functional magnetic 
resonance imaging (fMRI) data analysis are capable of 
estimating neuronal-related activity with no prior information 
on the timings of the blood oxygenation level-dependent 
(BOLD) events. These methods can provide useful 
information about brain function in cases where the 
information about the timing of the neuronal activity that 
drives the BOLD events is inaccurate or insufficient, assuming 
a particular hemodynamic model for the neurovascular 
coupling. A family of these algorithms adopt a linear time-
invariant model (i.e. a forward model of the BOLD response) 
that is then inverted by means of regularized least-squares 
estimators to deconvolve the neuronal-related activity at each 
voxel [1-6]. In particular, the sparse paradigm free mapping 
(SPFM) method [6], which is the basis of this work, employs 
sparsity-promoting regularization terms based on the L1-norm 
of the estimates (e.g. using the LASSO or the Dantzig 
Selector). Importantly, inverse problem solving is linked to a 
dilemma that has yet to be solved: the selection of the 
regularization parameters that yield accurate estimates. 
Methods based on statistical selection criteria after the 
computation of the entire regularization path [6] or iterative 
procedures so that the variance of the residuals after 
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deconvolution is equal to a prior estimate of the noise variance 
[3] have been previously used in the literature for parameter 
tuning due to their reduced computational cost. Yet, these 
methods offer no information about the appropriateness of the 
selected parameters.  

 This work introduces two improvements on the 
deconvolution of the fMRI signal with our previous SPFM 
algorithm [6]. First, we propose the use of the subsampling 
approach of stability selection [7] to avoid the choice of any 
regularization parameter and account for the likelihood of the 
different possible estimates in the regularization path. 
Although stability selection has been previously proposed in 
fMRI data analysis, for example in the estimation of functional 
connectivity matrices from partial correlations with sparse 
estimators [8] and to detect change points in time-varying 
functional connectivity with the graphical lasso [9], its 
application for the deconvolution of the fMRI signal is 
innovative. Further, we implement a novel procedure that 
enables to benefit from the computational speed of the least 
angle regression algorithm [10] in combination with the 
robustness of stability selection. Second, we modify the 
original SPFM formulation so that it computes estimates of the 
innovation signal of the neuronal-related signal (i.e. defining 
its changes) [3,11], rather than the signal itself. This enables to 
improve the estimation of neuronal-related events with long, 
sustained activity [3,11] that cannot be adequately described 
by conventional spike-like models [2, 5, 6].  

 The paper is organized as follows. In section II we 
introduce the signal model and describe the stability-based 
SFPM algorithm. In section III, we present the results of 
applying this new algorithm on experimental fMRI data and 
compare them to the previous SPFM algorithm. 

II. SIGNAL MODEL AND DECONVOLUTION WITH STABILITY-
BASED SPARSE PARADIGM FREE MAPPING 

In fMRI data analysis, the signal of a voxel y(t) is 
commonly modelled as the convolution of an underlying 
neuronal-related signal s(t) with the hemodynamic response 
function (HRF) h(t), plus a white noise component: y(t)= 
h(t)*s(t)+n(t), or y=Hs+n in discrete time matrix notation. 
Typically, the neuronal-related signal s(t) is represented as a 
train of Dirac impulses at the fMRI timescale associated with 
the experimental design. This model of the neuronal-related 
signal has been adopted by previous deconvolution algorithms 
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[4-6] relying on regularized least-squares estimators as 
follows: 

!" = argmin
!

1
2
‖- − /!‖"" + 1|!|# 	 , (1) 

where the Lp-norm |!|# penalizes the amplitude of the 
coefficients of the neuronal-related signal, e.g. p = 2 (i.e. ridge 
regression) and p = 1 (i.e. LASSO) were employed in [5] and 
[6], respectively. Instead of the on/off pattern described by 
Dirac impulses, we can also represent the neuronal-related 
signal s as a piecewise constant signal in terms of its 
innovation signal u (i.e. its first derivative in time). Defining 
! = 78 where 7 corresponds to the discrete integration 
operator [10], the signal model can be written as: 

- = /78 + 9	, (2) 
 
where -, 8, !, 9	 ∈ 	ℝ$; 7 ∈ 	ℝ$%$; 	/	 ∈ 	ℝ$%$is the Toeplitz 
convolution matrix with shifted HRFs, and N is the number 
of observations of the fMRI signal. The signal u will represent 
those instances when significant changes in the neuronal-
related activity occur. Since the innovation signal u is sparser 
than the neuronal-related signal s, it is also a more adequate 
representation if the temporal deconvolution of the fMRI time 
series of each voxel is performed with L1-norm regularized 
estimators as follows: 

8= = argmin
&

1
2
‖- − /78‖"" + 1|8|' 	 . (3) 

A. Combining stability selection with least angle regression 
An appropriate choice of the regularization parameter λ 

in (1) or (3) is crucial and a number of techniques to select it 
have already been proposed; for instance, based on the 
Bayesian Information Criterion [6]. However, these 
techniques do not provide a solution that is robust and optimal 
regardless of the different characteristics the data may show 
(e.g. signal-to-noise ratio, occurrence and duration of 
neuronal events). We propose to address this problem by 
implementing a novel procedure based on the stability 
selection approach. The data is randomly subsampled to retain 
60% of the time points of the voxel time series to generate @ 
=100 surrogate datasets -( 	(A = 1,… , @), which are then used 
to solve the optimization problem in (3). The model matrix H 
is subsampled accordingly. Then, the stability paths of the 
signal u for each surrogate i and each time point t (i.e. C)() are 
computed, which represent the probability of the coefficient 
being non-zero for a given λ. Originally, the stability selection 
approach operates by solving (3) for a predefined set of λ 
values, for example by means of the fast iterative shrinkage 
thresholding algorithm (FISTA) [12]. Alternatively, we 
propose to use the least angle regression (LARS) algorithm 
[9], which computes the entire regularization path for an 
optimal decreasing set of λ values and is faster than FISTA 
[12] for our purposes. Then, for each surrogate, the estimate 
C*!,)
(  at the regularization parameter 1, and time point t is 

binarized as D*!,)
( = 0 if C*!,)

( = 0 or D*!,)
( = 1 otherwise. To 

overcome the fact that solving (3) with the LARS algorithm 
will generate a different set of λ values in each subsampled 
surrogate, we create a new set of λ values. This new set 
contains all of the regularization parameters from all of the 

surrogate-specific regularization paths in decreasing order. 
We then assume that the coefficients D*!,)

(  remain 0 or 1 
according to the preceding value of 1,(  corresponding to the 
surrogate-specific regularization path computed by LARS. 
This step allows us to calculate the probabilities that construct 
the stability paths as the ratio of surrogates where each 
coefficient C*,) is different from 0 at each λ. Furthermore, 
unlike in the original stability selection procedure, which sets 
a given probability threshold to select the final set of non-zero 
coefficients, we propose to calculate the area under the curve 
(AUC) of the stability paths of each coefficient C) as follows:  

 

FGH) =
∑ 1,JKC*!,) ≠ 0M-
,.'

∑ 1,-
,.'

	 , (4) 

 
where JKC*!,) ≠ 0M = @/'∑ D*!,)

(0
(.'  represents the selection 

probability of coefficient C*,) for a particular choice of the 
regularization parameter 1,, and L is the total number of 
regularization parameters from all of the LARS regularization 
paths. Hence, the voxelwise time series FGH(O) reveals the 
most prominent coefficients indicating the probability of 
activation at each time point. 

Figure 1: Flowchart of the stability-based SPFM algorithm. 
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B. Thresholding and debiasing 
Afterwards, the AUC time series for each voxel are 

thresholded to identify those instances with high probability of 
a significant change in neuronal-related activity occurring. We 
base this threshold on a given percentile (or maximum) of the 
AUC values in a region of interest where no BOLD signal 
changes related to neuronal activity are assumed to occur (or 
can be detected). In this work, we set the threshold to the 99th 
percentile of the AUC values of deep white matter (DWM) 
voxels (see Results). 

Finally, it is recommended to remove the bias in the 
estimates of the neuronal-related signal owing to the 
regularization term. For the signal model in (1) used in the 
original SPFM approach [6], a debiased estimate of s can be 
obtained by solving the following least squares problem with 
a selection of non-zero AUC coefficients: 

 
!" = argmin

!
‖- − /!‖"" 	 . (5) 

 
Rather, in the signal model with the innovation signal 

(5), the selected non-zero coefficients of u are used to define 
a matrix A whose columns are activation segments with 
piecewise constant unit between two non-zero coefficients of 
u [13]. A final debiased estimate of s is obtained by solving 
the following least squares problem: 

 
!" = argmin

!
‖- − /Q!‖"" 	 . (6) 

 
Figure 1 shows a flowchart of the proposed stability-based 
SPFM algorithm. 

III. RESULTS AND DISCUSSION 
One healthy subject was scanned in a 7T MR scanner 

(Siemens) using a 32-channel receive transmit coil under a 
Cleveland Clinic Institutional Review Board approved 
protocol (QED, Cleveland, OH). A volumetric MP2RAGE 
image was acquired for anatomy. Two fMRI datasets were 
acquired with a simultaneous multislice EPI sequence (MB 
factor = 3, TE = 21 ms, field of view = 192x192 mm2) at TR 
= 2800 ms (1.2x1.2x1.5 mm3, flip angle = 55º) and 500 ms 
(3x3x3 mm3, flip angle = 70º). For both TRs, the subject 
performed finger tapping events with the right index and 
thumb fingers every 45 s, where a single tap was performed in 
the first 6 minutes, or 10 taps quickly for the remaining 4 
minutes. The onsets and durations of the paradigm are shown 
as grey vertical lines in Figure 2 (a) and (b). 

Data preprocessing comprised an initial correction for 
motion using SLOMOCO2 [14], detrending of 6th order 
Legendre polynomials and normalization to signal percentage 
change (SPC) with AFNI. Furthermore, a mask of white matter 
voxels was computed from the anatomical image with 3dSeg, 
which was then eroded 2 voxels to delimit voxels in deep white 
matter in the functional space. Data were analyzed with three 
different methods: 1) a traditional general linear model (GLM) 
analysis using the onsets and durations of the tapping events; 
2) the former SPFM approach (3dPFM) using the LASSO for 
deconvolution and selection of the regularization parameter 
based on the Bayesian Information Criterion (BIC) [6]; and 3) 

the novel stability-based SPFM with and without the 
integration operator in its formulation. Both SPFM approaches 
used the double-gamma canonical HRF as a model for 
deconvolution (SPMG1 shape in 3dDeconvolve in AFNI). 
Previous to the final debiasing step, spatio-temporal clustering 
of a minimum of 5 contiguous voxels with activation (i.e. non-
zero coefficient after thresholding) in a temporal window of 
±1 TR was also performed to remove spurious, scattered 
activations. 

Figure 2 depicts the activity maps estimated with all of the 
methods for different finger-tapping instants and the time 
courses of a voxel in the left primary motor cortex (marked 
with a white cross in the maps) for the high temporal and low 
spatial resolution dataset (a, c and e) and the low temporal and 
high spatial resolution dataset (b, d and f). 

In the high temporal and low spatial resolution scenario 
(i.e. a high contrast-to-noise ratio regime), the activity maps in 
Figure 2(e) illustrate that the original SPFM is able to detect 
finger tapping events with a high specificity. Implementing 
stability selection on the original SPFM algorithm increases 
the sensitivity while maintaining the specificity. However, as 
it can be seen in Figure 2(a), the lack of an integration operator 
yields very variable estimates of the neuronal-related signal 
after debiasing with least squares (here scaled by 0.05 for 
visualization purposes) due to the large correlation of the 
debiasing model with contiguous non-zero coefficients at this 
fast temporal resolution. Conversely, the novel stability-based 
SPFM with the integration operator shows activity maps that 
are comparable to the ground truth despite the lower amplitude 
of the estimates. Yet, it can be observed in Figure 2(c) that the 
signal model with the integrator overestimates the duration of 
the piecewise constant estimates for the short finger tapping 
events. Thus, in this scenario, the use of the stability selection 
and the innovation signal exhibits a similar performance to the 
original SPFM algorithm using LASSO and BIC since the high 
temporal resolution of the data (TR = 0.5 s) provides a precise 
and clear characterization of the dynamics of the BOLD signal, 
which facilitates the differentiation between noise and 
neuronal-related signal. 

In an acquisition with a high spatial resolution and a low 
temporal resolution (i.e. a low contrast-to-noise ratio regime), 
Figures 2 (b), (d) and (f) demonstrate that the novel stability-
based SPFM approach is able to detect more finger-tapping 
events and their associated brain activity than the original 
SPFM method. This advantage is clearly seen in the case of 
the single-tapping events, which exhibit a lower amplitude in 
the response than the long events with 10 consecutive finger 
taps. The stability selection proves to be essential in correctly 
estimating finger tapping events, regardless of the use of the 
integration operator. The addition of the integration operator 
to the SPFM model produces activity maps that are closer to 
the ground truth of the GLM analysis (see Figure 2(f)), even 
though the durations of the piecewise constant estimates are 
overestimated (see Figure 2(b)). In this regime, the BIC 
criterion in the original SPFM is not able to discern between 
neuronal-related events and noise, failing to detect the finger 
tapping events, probably as the shape of the BOLD response, 
which takes 4-6 s to reach its maximum amplitude, cannot be 
properly characterized by the model owing to the low temporal 
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resolution (TR = 2.8 s). Hence, the stability selection 
procedure exhibits a robust performance at correctly 
estimating the neuronal-related events resulting from the 
finger tapping tasks, which showcases that the additions to the 
SPFM technique are promising, especially in low temporal 
resolution settings. Future work will evaluate the novel 
formulation on more complex and ecological paradigms 
containing trials of different durations (e.g. 1, 5 and 15 s long) 
and the implementation of this approach in spatio-temporal 
deconvolution models [3]. 
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