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Abstract— Video Photoplethysmography (vPPG) allows for
estimation of blood volume pulse (BVP) from the skin by
means of a video camera recording at high frequency rate.
The estimation procedure presents several drawbacks in its
application to real world conditions, such as light changes or
movements that often generate artifacts in the extracted BVP
waveform. In addition, the process requires a skin segmentation
algorithm to distinguish skin pixels from the background. To
date, even the most refined skin segmentation algorithms still
need a manual definition that could lead to incorrect pixel
classification, and consequently to a decrease in the signal-to-
noise ratio (SNR). We here propose a fully autonomic procedure
able to extract BVP from video recordings of the skin in real
world conditions.

The experimental protocol is designed to record the signals
of interest and to evaluate changes in the Autonomic Nervous
System modulation of the heart during a baseline condition and
a controlled breathing phase. Video recordings are gathered
from 4 young healthy subjects (age: 21±1 years). vPPG signals
are processed in order to extract the BVP waveform, and a peak
detection algorithm detects pulse wave peaks that are then used
to compute specific measures of heart rate variability (HRV).

The procedure is successfully validated by comparing the
extracted HRV measures against those extracted using a finger
photoplethysmograph (fPPG) using three different skin segmen-
tation algorithms from BVP signals.

Clinical Relevance— The proposed procedure paves the way
for a monitoring tool able to collect high resolution BVP
measurements from the subject’s hand in controlled clinical
settings.

I. INTRODUCTION

In recent years, video photoplethysmography (vPPG) has
been employed in order to extract cardiovascular parameters
with no contact with the subject, and validated both on face
and on skin regions. In particular, heart rate variability (HRV)
indexes have been investigated by applying experimental
protocols that could elicit the Autonomic Nervous System
(ANS), such as rest to stand [1] or thermal shock [2]
protocols. These analyses have provided evidence that vPPG
is able to correctly estimate the influence of the ANS on the
heart by HRV frequency domain indexes established in the
last decades [3].

In order to properly extract the BVP waveform by vPPG
technology, previous studies have proposed algorithms able
to distinguish skin pixels from the background. One of the
most popular methods analyzes face skin pixels after the
application of a face detection algorithm [4], such as the
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Viola-Jones algorithm [5]. Drawbacks of this procedure are
related to improper recognition of features from the face,
as well as to irregular illumination on the skin, due to real
world luminosity conditions.

In our previous study, a semi-automatic algorithm was
proposed in order to extract the vPPG signal from video
recordings of the hand palm, showing an overall agreement
in terms of time domain features of HRV indexes [2].
This methodology required the manual selection of skin
pixels and background pixels, which lacks automatism and
homogeneity. Here, we present a novel automatic vPPG
signal extraction procedure from skin pixels and we test
it on 4 healthy subjects by comparing time and frequency
domain HRV indexes in baseline resting state and during a
controlled breathing phase. In addition, we compare three
different classification algorithms able to distinguish skin
pixels from background pixels.

HRV indexes are calculated after automatic systolic peak
detection [6]. Standard HRV parameters are validated by
characterizing the activity of the ANS, in particular pNN50
and SDNN, and very-Low Frequencies (VLF), Low Frequen-
cies (LF) and High Frequencies (HF) [3].

II. STATE OF THE ART

The Video Photoplethysmography (vPPG) is an innovative
technology which aims at estimating the blood pressure pulse
from video recordings of the skin. The first scientific publi-
cation related to vPPG was published by Verkruysse et al. in
2008 [7], were the authors provided a solution to overcame
problems related to the fingerPPG (fPPG) technology, which
needs a continuous contact with only small portions of the
skin, such as fingers or earlobes. However authors provided
results only on a limited cohort of subjects, therefore it was
necessary to carry out studies on a larger sample. In the last
years, several studies were conducted in order to extract heart
rate (HR) from video recording of the skin, both for resting
state condition [8] and during acute hypoxic challenges [9].

Other studies investigated HRV indexes, which are recog-
nized as related to the activity of the Autonomous Nervous
System (ANS) on the heart [3]. Iozzia et al. evaluated the
vPPG signal during a rest-to-stand protocol on 60 subjects
and estimated HRV indexes (both in time and frequency
domain) [4], demonstrating a strong correlation with those
calculated from ECG. However, some shortcomings of this
approach were the movement’s artifacts of subject’s faces
and real world condition of luminosity.



A key stage for the extraction of the vPPG signal is the
implementation of a skin detection algorithm able to distin-
guish skin pixels from the background. There are mainly two
kinds of approaches to this issue: pixel-based and ROI-based
algorithms. Pixel-based approach relies on the definition of
a-priori thresholds that could distinguish skin pixels [10],
using different color spaces (RGB,YCbCr,HSV). ROI-based
algorithms are based on the definition of region of interest
on the skin after the search for features, such as eyes and
nose [5]. However, both algorithms present some drawbacks
when applied to real world condition of luminosity or on
different skin types. In order to perform a better selection
of the skin pixels, Oghaz et al. provided a study where
several machine learning algorithms were compared together
in order to reach the highest value of accuracy and area under
the receiver operating curve (ROC-AUC) [11]. The authors
showed higher performances than methods described before
in terms of skin pixel classification.

III. METHODS

To address current limitations, we developed a novel pro-
cedure that autonomously extracts vPPG signal from video
recordings of the hand, according to the following steps:

1) Automatic selection of skin pixels from pixels related
to background or sensors placed on fingers;

2) vPPG signal extraction from skin pixels using three
different classification algorithms;

3) Signal processing stage to obtain BVP waveform from
raw vPPG signal;

4) Statistical comparison of HRV indexes between BVP
signal from fPPG and vPPG.

A. Experimental protocol

Four healthy subjects (age: 21±1) volunteered for this
study. Each signed a written informed consent describing
the experimental protocol, whose procedure received the
approval from the Politecnico di Milano Ethical Committee.
Volunteers’ skin type range from type II to type III of the
Fitzpatrick scale [12].

Each subject was equipped with 4 different sensors:
• ECG sensor with chest-placement configuration;
• respiration sensor located in the middle of the chest;
• fPPG sensor placed on the middle finger of the left hand;
• skin-conductance sensor on the index and ring finger of

the left hand.
Left hand is then placed on a hand support in order to limit
artifacts due to movements.

After a resting phase of at least 15 minutes for each
subject, we recorded 5 minutes of baseline condition (Rest).
Then, after a cold pressure maneuver and a grip task, we
asked the subject to perform deep inspirations and exhala-
tions with a pace of 1 second each for 2 minutes in total
(Resp). In this analysis we perform a comparison between
the Rest phase and the Resp phase in terms of HRV-indexes.

The subjects’ left hand was centered in the middle of
the frame and an Imaging Source DFK-23UM021 camera
equipped with a 15 mm mixed focal length lenses was used

with a frame-rate of 115 frames-per-seconds. The physio-
logical signals were acquired through FlexComp Infiniti by
Thought Technologies, Inc. device, sampling ECG, BVP,
skin conductance and respiration sensors at 2048 Hz.

B. Automatic Algorithm for Pixel Classification

The algorithm is based on K-Means clustering technique,
an unsupervised learning method that divides a set of N
samples into K disjoint clusters C, each described by the
mean of the samples in the cluster, called centroid (µ); given
a distance metric, the algorithm groups each observation xi in
the corresponding cluster by minimizing its distance with the
centroid [13]. We used K-Means algorithm to group pixels
of the first frame for similarity, using 4 clusters (background,
shadows, sensors equipment, hand) and evaluating inertia
distance metric, or within-cluster sum-of-squares criterion:

inertia =
N

∑
i=0

minµ j∈C(‖xi−µ j‖2) (1)

The one cluster representing the skin was identified by
looking at which cluster the central pixel of the image
belongs to.

Then, pixels belonging to skin cluster are grouped together
and compared with the others to create a binary classification
training set to feed the skin detection algorithms.

C. Skin Segmentation Algorithms

Once the hand region was defined, skin segmentation algo-
rithms were trained on the first frame of the video recording
using three different supervised learning algorithms in order
to validate the model with higher performances in estimating
HRV indexes.

The first algorithm is based on a Decision Tree classifier
(DT), a non-parametric supervised method minimizing an
impurity function H at each split node [14]. In particular we
applied the Cross-Entropy function defined as:

H(Xm) =−∑
k

pmk(1− pmk) (2)

where pmk is the proportion of class k observations in node
m.

The second method used entailed Support Vector Ma-
chines (SVM), defining an hyperplane that is able to prop-
erly separate records looking at the target feature [15]. A
quadratic optimization problem with linear constraints needs
to be solved in order to evaluate the coefficients w and the
intercept b of the hyperplane:

minw,b
1
2
‖w‖2

s.to yi(w′xi−b)≥ 1
(3)

The third method is based on Logistic Regression (LR),
evaluating the posterior probability P(y = 0|x) by using a
logistic function:

P(y = 0|x) = 1
1+ ew′x (4)



Fig. 1. Skin detection algorithms applied on subject’s hand: (a) k-means
clustering, (b) Decision Tree, (c) Support Vector Machines, (d) Logistic
Regression

where w are the slope regression coefficients [16].
Machine learning algorithms are trained with the binary

classification training set defined in the previous section and,
for each video frame, skin segmentation is performed as
demonstrated in Fig.1 by applying the trained algorithms.

In order to extract the vPPG signal, we calculated the mean
values of the R,G,B channels in each skin region (Sk) and
for each frame k.

Mk(c) =
H

∑
i=1

W

∑
j=1

Pi j(c)
1

Nk
,∀(i, j) ∈ Sk (5)

where k is the number of video-frames, c is the color channel
(Red, Green, Blue), H is the height and W is the width of
the frames, Nk is the number of skin-pixel in each frame k
and P is the matrix HxWx3 of the frames, resulting in a 3xk
matrix M, containing the vPPG signal.

D. Video Signal Processing

The steps to compare vPPG with fPPG use a non-linear
trend removal and filtering procedure with a pass band (0.3-
4Hz) Hamming filter as already presented in [2].

So far, the extracted signals appear very similar to the
plethysmographic one with all the segmentation methods and
frequently details as the dicrotic notch appears more evident,
in line with the shape expected on the original blood pressure
waveform, as illustrated in Fig.2. Of note, the proposed steps
were able to maintain the signal amplitude, a quite relevant
feature for monitoring.

E. Feature Extraction and Statistical Analysis

The Automatic Multiscale-based Peak Detection (AMPD)
method [6], was used to extract the systolic peak locations
as surrogate of ECG R-peaks both in vPPGs and fPPG.

The comparison between different skin segmentation
methods was performed by extracting HRV-related features
from both fPPG and vPPG, during Rest and Resp.

Fig. 2. Comparison of BVP signal extracted with fPPG and vPPG using
different classification algorithms : Logistic Regression (blue), Support
Vector Machines (yellow) and Decision Tree (green)

For each feature i an error measure was defined as the dif-
ference between the i-th feature extracted from the reference
(fPPG) and the same feature (xk(i)) computed with the k-th
algorithm and then normalized by the reference itself.

ek(i) =
f PPG(i)− xk(i)

f PPG(i)
(6)

For statistical analysis, we considered the mean of PP
interval (µPP), pNN50 and SDNN parameters, as important
time domain measures.

In the frequency domain, we analyzed the Power Spectral
Density (PSD) of the PP intervals in the 2 phases. The PSD
is calculated in three range of frequencies:
• Very Low Frequencies (VLF): from 0.0033 to 0.04Hz
• Low Frequencies (LF): from 0.04 to 0.15Hz
• High Frequencies (HF): from 0.15 to 0.40Hz

IV. RESULTS

The extracted time and frequency domain features were
averaged among all subjects. Each feature computed from the
different vPPG signals is compared with the one computed
on the fPPG by Mann-Whitney U test for each stimulus
condition.

The obtained averages and mean absolute deviations
(MAD) for the chosen features are shown in table I. Of note,
no significant statistical difference between time domain
features can be observed. Conversely, the SVM segmentation
algorithm shows a significant statistical difference (p< 0.05)
on the HF and HFn features only under Resp condition.

In accordance with fPPG recordings, all the algorithms
show a decrease of the average PP interval, whereas SDNN
and pNN50 show an increase for all the subjects during the
Resp phase with respect to Rest. In addition, HF, LF, LFn,
VLF and LF/HF, decrease under Resp conditions and only
HFn shows an increase during the paced breathing phase.

Finally, SSEs, summarized in table II, show a smaller SSE
for the Decision Tree classifier against the others.

V. DISCUSSION AND CONCLUSIONS

We have presented an automatic procedure for skin seg-
mentation that successfully recognizes skin pixels from the



TABLE I
TIME- AND FREQUENCY-DOMAIN FEATURES FOR FINGER-PPG (FPPG)

AND VIDEOPPG (V-K) EXTRACTED WITH DECISION TREE (K=DT),
SUPPORT VECTOR MACHINE (K=SVM) AND LOGISTIC REGRESSION

(K=LR) EXPRESSED AS Mean(x)±MAD(x). STATISTICAL SIGNIFICANCE

IS DEFINED AS FOLLOWS: ∗ = p < 0.05, ∗∗ = p < 0.001 AND
∗∗∗ = p < 0.0001

Feature Session fPPG v-DT v-SVM v-LR

µPP

Rest 0.755 0.760 0.761 0.758
±0.050 ±0.049 ±0.048 ±0.050

Resp 0.707 0.723 0.723 0.716
±0.039 ±0.045 ±0.039 ±0.050

SDNN
Rest 0.072 0.077 0.079 0.085

±0.008 ±0.009 ±0.007 ±0.014

Resp 0.085 0.081 0.089 0.089
±0.015 ±0.016 ±6.535 ±0.017

pNN50
Rest 0.200 0.376 0.403 0.450

±0.102 ±0.066 ±0.049 ±0.124

Resp 0.312 0.493 0.563 0.505
±0.122 ±0.147 ±0.154 ±0.109

HF
Rest 119.031 124.290 114.038 127.293

±31.832 ±18.082 ±14.920 ±7.025

Resp 91.921 70.480 58.215 69.587
±11.042 ±16.850 ±12.121∗ ±7.364

HFn
Rest 0.324 0.353 0.325 0.361

±0.058 ±0.070 ±0.057 ±0.040

Resp 0.551 0.440 0.383 0.437
±0.031 ±0.071 ±0.066∗ ±0.0458

LF
Rest 190.081 156.829 146.299 158.869

±35.263 ±25.744 ±16.887 ±29.330

Resp 44.995 49.563 50.930 58.258
±15.697 ±13.429 ±8.951 ±5.776

LFn
Rest 0.538 0.412 0.437 0.397

±0.115 ±0.067 ±0.070 ±0.020

Resp 0.278 0.300 0.280 0.341
±0.116 ±0.061 ±0.036 ±0.025

V LF
Rest 111.538 74.543 73.235 81.787

±24.392 ±27.260 ±29.524 ±16.517

Resp 14.830 12.618 10.453 10.711
±6.535 ±6.210 ±2.431 ±5.936

LF/HF
Rest 1.800 1.327 1.423 1.171

±0.546 ±0.383 ±0.204 ±0.2650

Resp 0.521 0.710 0.899 0.867
±0.234 ±0.171 ±0.204 ±0.163

first frame of the video recording, allowing the training of
a model that can be easily applied to the successive frames,
thus reducing the overall computational cost of running
an unsupervised method for each frame. HRV measures
extracted from the resulting vPPG are not different from
the ones extracted with fPPG, suggesting that the automatic
procedure for vPPG extraction can be used to quantify HRV
automatically and in a contactless way. The comparison
between three different machine learning methods for hand
segmentation and vPPG extraction shows that a DT classifier
performs better when computing HRV measures than the
others. Finally, the measured autonomic changes suggest
that paced breathing shifts the autonomic activity toward
Vagal tone and increases baroreflex sensitivity despite a
decrease in the average PP intervals. The observed increase
of HFn and a decrease in LFn and LF/HF are in agreement

TABLE II
SUM OF SQUARED ERRORS (ek ) FOR THE PROPOSED ALGORITHMS IN

Rest AND Resp CONDITIONS

Algorithm Rest Resp

v-DT 1.533 1.046

v-LR 2.198 1.370

v-SVM 1.658 1.362

with previous findings on contact-derived HRV indexes [17].
Further studies with an increased number of subjects needs
to be performed in order to validate this preliminary study.
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